Given:
\( K_c = \frac{[\text{PCl}_5]}{[\text{PCl}_3][\text{Cl}_2]} = \frac{0.4}{0.2 \times 0.1} = 20 \)
Reaction:
\( \text{PCl}_3 + \text{Cl}_2 \rightleftharpoons \text{PCl}_5 \)
Initial Concentrations:
\( [\text{PCl}_3] = 0.2 \text{ M}, [\text{Cl}_2] = 0.1 \text{ M}, [\text{PCl}_5] = 0.4 \text{ M} \)
At Equilibrium, assuming x M of PCl3 reacts:
\( [\text{PCl}_3] = 0.2 - x, [\text{Cl}_2] = 0.1 + 0.2 - x = 0.3 -x, [\text{PCl}_5] = 0.4 + x \)
\( K_c = \frac{0.4 + x}{(0.2 - x)(0.3 - x)} \)
Given: \( K_c = 20 \)
Substituting values into the equation:
\( 20 = \frac{0.4 + x}{(0.2 - x)(0.3 - x)} \)
Solving for x (details omitted, assumed to be solved):
\( x \approx 0.086 \)
\( [\text{PCl}_5] = 0.4 + x = 0.4 + 0.086 = 0.486 \text{ M} \)
\( [\text{PCl}_5] = 0.486 \text{ M} = 48.6 \times 10^{-2} \text{ M} \)
\( [\text{PCl}_5] \approx 49 \times 10^{-2} \text{ M} \)
Ans. 49
We are given the equilibrium constant Kc for the reaction at 298 K as 20.
\(K_c =\) \(\frac{[PCl_5]}{[PCl_3][Cl_2]} =\) \(\frac{0.40}{0.20 \times 0.10}\) \(= 20\)
After adding 0.2 mol of \(Cl_2\), the new concentrations become:
\(PCl_3 = 0.2 - x,\)
\(Cl_2 = 0.2 + x, \)
\(PCl_5 = 0.4 + x.\)
Solving for x, we find that x = 0.084. Thus, the equilibrium concentration of \(PCl_5\) is 0.484 \(mol L^{-1}\).
Consider the following equilibrium, $$ \text{CO(g)} + \text{H}_2\text{(g)} \rightleftharpoons \text{CH}_3\text{OH(g)} $$ 0.1 mol of CO along with a catalyst is present in a 2 dm$^3$ flask maintained at 500 K. Hydrogen is introduced into the flask until the pressure is 5 bar and 0.04 mol of CH$_3$OH is formed. The $ K_p $ is ...... x $ 10^7 $ (nearest integer).
Given: $ R = 0.08 \, \text{dm}^3 \, \text{bar} \, \text{K}^{-1} \, \text{mol}^{-1} $
Assume only methanol is formed as the product and the system follows ideal gas behavior.
The pH of a 0.01 M weak acid $\mathrm{HX}\left(\mathrm{K}_{\mathrm{a}}=4 \times 10^{-10}\right)$ is found to be 5 . Now the acid solution is diluted with excess of water so that the pH of the solution changes to 6 . The new concentration of the diluted weak acid is given as $\mathrm{x} \times 10^{-4} \mathrm{M}$. The value of x is _______ (nearest integer).
A body of mass $m$ is suspended by two strings making angles $\theta_{1}$ and $\theta_{2}$ with the horizontal ceiling with tensions $\mathrm{T}_{1}$ and $\mathrm{T}_{2}$ simultaneously. $\mathrm{T}_{1}$ and $\mathrm{T}_{2}$ are related by $\mathrm{T}_{1}=\sqrt{3} \mathrm{~T}_{2}$. the angles $\theta_{1}$ and $\theta_{2}$ are
Let $ P_n = \alpha^n + \beta^n $, $ n \in \mathbb{N} $. If $ P_{10} = 123,\ P_9 = 76,\ P_8 = 47 $ and $ P_1 = 1 $, then the quadratic equation having roots $ \alpha $ and $ \frac{1}{\beta} $ is: