Step 1: Write the Balanced Chemical Equation for the Combustion of \( \text{CH}_3\text{OH}(l) \)
The combustion of methanol ($\text{CH}_3\text{OH}$) involves its reaction with oxygen ($\text{O}_2$) to produce carbon dioxide ($\text{CO}_2$) and water ($\text{H}_2\text{O}$).
\[
\text{CH}_3\text{OH}(l) + \frac{3}{2}\text{O}_2(\text{g}) \rightarrow \text{CO}_2(\text{g}) + 2\text{H}_2\text{O}(l)
\]
Step 2: State the Formula for Enthalpy of Reaction from Enthalpies of Formation
The enthalpy of a reaction ($\Delta H_{\text{reaction}}$) can be calculated from the standard enthalpies of formation ($\Delta H_f^\circ$) of the products and reactants using the following formula:
\[
\Delta H_{\text{reaction}} = \sum (\text{stoichiometric coefficients} \times \Delta H_f^\circ \text{ products}) - \sum (\text{stoichiometric coefficients} \times \Delta H_f^\circ \text{ reactants})
\]
Step 3: List the Given Enthalpies of Formation and Reaction
Given:
\begin{itemize}
\item Enthalpy of formation of $\text{CO}_2(\text{g})$, $\Delta H_f^\circ (\text{CO}_2(\text{g})) = -393.5 \text{ kJ mol}^{-1}$
\item Enthalpy of formation of $\text{H}_2\text{O}(l)$, $\Delta H_f^\circ (\text{H}_2\text{O}(l)) = -286 \text{ kJ mol}^{-1}$
\item Heat of combustion of $\text{CH}_3\text{OH}(l)$, $\Delta H_{\text{combustion}} = -749 \text{ kJ mol}^{-1}$
\item Enthalpy of formation of $\text{O}_2(\text{g})$ is 0 (as it's an element in its standard state).
\end{itemize}
Let the enthalpy of formation of $\text{CH}_3\text{OH}(l)$ be $\Delta H_f^\circ (\text{CH}_3\text{OH}(l))$.
Step 4: Substitute the Values into the Enthalpy of Reaction Formula
Using the balanced equation from Step 1 and the formula from Step 2:
\[
\Delta H_{\text{combustion}} = [1 \times \Delta H_f^\circ (\text{CO}_2(\text{g})) + 2 \times \Delta H_f^\circ (\text{H}_2\text{O}(l))] - [1 \times \Delta H_f^\circ (\text{CH}_3\text{OH}(l)) + \frac{3}{2} \times \Delta H_f^\circ (\text{O}_2(\text{g}))]
\]
Substitute the known values:
\[
-749 = [1 \times (-393.5) + 2 \times (-286)] - [\Delta H_f^\circ (\text{CH}_3\text{OH}(l)) + \frac{3}{2} \times 0]
\]
\[
-749 = [-393.5 - 572] - \Delta H_f^\circ (\text{CH}_3\text{OH}(l))
\]
\[
-749 = -965.5 - \Delta H_f^\circ (\text{CH}_3\text{OH}(l))
\]
Step 5: Solve for \( \Delta H_f^\circ (\text{CH}_3\text{OH}(l)) \)
Rearrange the equation to solve for $\Delta H_f^\circ (\text{CH}_3\text{OH}(l))$:
\[
\Delta H_f^\circ (\text{CH}_3\text{OH}(l)) = -965.5 + 749
\]
\[
\Delta H_f^\circ (\text{CH}_3\text{OH}(l)) = -216.5 \text{ kJ mol}^{-1}
\]
Step 6: Analyze Options
\begin{itemize}
\item Option (1): +216.5. Incorrect.
\item Option (2): -216.5. Correct, as it matches our calculated enthalpy of formation.
\item Option (3): -355.5. Incorrect.
Option (4): +355.5. Incorrect.
\end{itemize}