Question:

The enthalpy of formation of \( \text{CO}_2(\text{g}) \) and \( \text{H}_2\text{O}(l) \) are \(-393.5\) and \(-286 \text{ kJ mol}^{-1}\) respectively. If the heat of combustion of \( \text{CH}_3\text{OH}(l) \) is \(-749 \text{ kJ mol}^{-1}\), the enthalpy of formation of \( \text{CH}_3\text{OH}(l) \) \(in \text{kJ mol}^{-1}\) is

Show Hint

Always ensure the chemical equation is balanced before applying the enthalpy of reaction formula. Remember that the standard enthalpy of formation for elements in their most stable state (e.g., $\text{O}_2(\text{g})$, $\text{N}_2(\text{g})$, $\text{C(graphite)}$) is zero. Pay close attention to signs and unit conversions (if any are needed).
Updated On: Jun 3, 2025
  • +216.5
  • -216.5
  • -355.5
  • +355.5
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is B

Solution and Explanation

Step 1: Write the Balanced Chemical Equation for the Combustion of \( \text{CH}_3\text{OH}(l) \)
The combustion of methanol ($\text{CH}_3\text{OH}$) involves its reaction with oxygen ($\text{O}_2$) to produce carbon dioxide ($\text{CO}_2$) and water ($\text{H}_2\text{O}$). \[ \text{CH}_3\text{OH}(l) + \frac{3}{2}\text{O}_2(\text{g}) \rightarrow \text{CO}_2(\text{g}) + 2\text{H}_2\text{O}(l) \] Step 2: State the Formula for Enthalpy of Reaction from Enthalpies of Formation
The enthalpy of a reaction ($\Delta H_{\text{reaction}}$) can be calculated from the standard enthalpies of formation ($\Delta H_f^\circ$) of the products and reactants using the following formula: \[ \Delta H_{\text{reaction}} = \sum (\text{stoichiometric coefficients} \times \Delta H_f^\circ \text{ products}) - \sum (\text{stoichiometric coefficients} \times \Delta H_f^\circ \text{ reactants}) \] Step 3: List the Given Enthalpies of Formation and Reaction
Given: \begin{itemize} \item Enthalpy of formation of $\text{CO}_2(\text{g})$, $\Delta H_f^\circ (\text{CO}_2(\text{g})) = -393.5 \text{ kJ mol}^{-1}$ \item Enthalpy of formation of $\text{H}_2\text{O}(l)$, $\Delta H_f^\circ (\text{H}_2\text{O}(l)) = -286 \text{ kJ mol}^{-1}$ \item Heat of combustion of $\text{CH}_3\text{OH}(l)$, $\Delta H_{\text{combustion}} = -749 \text{ kJ mol}^{-1}$ \item Enthalpy of formation of $\text{O}_2(\text{g})$ is 0 (as it's an element in its standard state). \end{itemize} Let the enthalpy of formation of $\text{CH}_3\text{OH}(l)$ be $\Delta H_f^\circ (\text{CH}_3\text{OH}(l))$. Step 4: Substitute the Values into the Enthalpy of Reaction Formula
Using the balanced equation from Step 1 and the formula from Step 2: \[ \Delta H_{\text{combustion}} = [1 \times \Delta H_f^\circ (\text{CO}_2(\text{g})) + 2 \times \Delta H_f^\circ (\text{H}_2\text{O}(l))] - [1 \times \Delta H_f^\circ (\text{CH}_3\text{OH}(l)) + \frac{3}{2} \times \Delta H_f^\circ (\text{O}_2(\text{g}))] \] Substitute the known values: \[ -749 = [1 \times (-393.5) + 2 \times (-286)] - [\Delta H_f^\circ (\text{CH}_3\text{OH}(l)) + \frac{3}{2} \times 0] \] \[ -749 = [-393.5 - 572] - \Delta H_f^\circ (\text{CH}_3\text{OH}(l)) \] \[ -749 = -965.5 - \Delta H_f^\circ (\text{CH}_3\text{OH}(l)) \] Step 5: Solve for \( \Delta H_f^\circ (\text{CH}_3\text{OH}(l)) \)
Rearrange the equation to solve for $\Delta H_f^\circ (\text{CH}_3\text{OH}(l))$: \[ \Delta H_f^\circ (\text{CH}_3\text{OH}(l)) = -965.5 + 749 \] \[ \Delta H_f^\circ (\text{CH}_3\text{OH}(l)) = -216.5 \text{ kJ mol}^{-1} \] Step 6: Analyze Options
\begin{itemize} \item Option (1): +216.5. Incorrect. \item Option (2): -216.5. Correct, as it matches our calculated enthalpy of formation. \item Option (3): -355.5. Incorrect. Option (4): +355.5. Incorrect. \end{itemize}
Was this answer helpful?
0
0