The enthalpy change for a reaction is related to the standard enthalpies of formation (\( \Delta H_f^\circ \)) of the reactants and products by Hess’s law:
\[
\Delta H_{\text{reaction}}^\circ = \sum \Delta H_f^\circ (\text{products}) - \sum \Delta H_f^\circ (\text{reactants})
\]
Given:
- Enthalpy change of the reaction: \( \Delta H_{\text{reaction}}^\circ = -1410 \, \text{kJ/mol} \),
- Standard enthalpy of formation of \( \text{CO}_2 (\text{g}) \): \( \Delta H_f^\circ (\text{CO}_2) = -393.5 \, \text{kJ/mol} \),
- Standard enthalpy of formation of \( \text{H}_2\text{O} (\text{l}) \): \( \Delta H_f^\circ (\text{H}_2\text{O}) = -286 \, \text{kJ/mol} \),
- Standard enthalpy of formation of \( \text{O}_2 (\text{g}) \): \( \Delta H_f^\circ (\text{O}_2) = 0 \, \text{kJ/mol} \) (as it is an element in its standard state).
We need to find the standard enthalpy of formation of \( \text{C}_2\text{H}_4 (\text{g}) \), denoted as \( \Delta H_f^\circ (\text{C}_2\text{H}_4) \).
For the reaction:
\[
\text{C}_2\text{H}_4 (\text{g}) + 3\text{O}_2 (\text{g}) \rightarrow 2\text{CO}_2 (\text{g}) + 2\text{H}_2\text{O} (\text{l})
\]
The enthalpy change is:
\[
\Delta H_{\text{reaction}}^\circ = [2 \Delta H_f^\circ (\text{CO}_2) + 2 \Delta H_f^\circ (\text{H}_2\text{O})] - [\Delta H_f^\circ (\text{C}_2\text{H}_4) + 3 \Delta H_f^\circ (\text{O}_2)]
\]
Substitute the known values:
\[
-1410 = [2 \times (-393.5) + 2 \times (-286)] - [\Delta H_f^\circ (\text{C}_2\text{H}_4) + 3 \times 0]
\]
Calculate the products’ enthalpies:
\[
2 \times (-393.5) = -787 \, \text{kJ/mol}, \quad 2 \times (-286) = -572 \, \text{kJ/mol}
\]
\[
-787 + (-572) = -1359 \, \text{kJ/mol}
\]
So:
\[
-1410 = -1359 - \Delta H_f^\circ (\text{C}_2\text{H}_4)
\]
Solve for \( \Delta H_f^\circ (\text{C}_2\text{H}_4) \):
\[
\Delta H_f^\circ (\text{C}_2\text{H}_4) = -1359 + 1410 = +51 \, \text{kJ/mol} \approx +52 \, \text{kJ/mol}
\]
Thus, the standard enthalpy of formation of \( \text{C}_2\text{H}_4 (\text{g}) \) is \( +52 \, \text{kJ/mol} \).