The energy of a photon emitted during a transition is related to its wavelength by:
\( E = \frac{hc}{\lambda} \)
where \( h \) is Planck's constant, \( c \) is the speed of light, and \( \lambda \) is the wavelength.
From the equation above, we can see that for the shortest wavelength (\( \lambda_{min} \)), the energy (\( E \)) must be maximum.
The energy of a photon emitted during a transition is equal to the difference in energy levels:
\( E = E_{initial} - E_{final} \)
The largest energy difference corresponds to the shortest wavelength. In the given diagram:
The energy levels in a hydrogen atom are given by:
\( E_n = -\frac{13.6 \text{ eV}}{n^2} \)
We can see that transitions C and D are identical in the provided image and diagram, which is likely an error in the original question. Assuming D is meant to be the transition from \( n = 3 \) to \( n = 1 \), D represents the largest energy difference, followed by C (which is the same as D, again suggesting an error), then B, and finally A.
The transition corresponding to the emission of the shortest wavelength is D (assuming it is intended to represent the transition from \( n = 3 \) to \( n = 1 \)) (Option 2).

Let \( a \in \mathbb{R} \) and \( A \) be a matrix of order \( 3 \times 3 \) such that \( \det(A) = -4 \) and \[ A + I = \begin{bmatrix} 1 & a & 1 \\ 2 & 1 & 0 \\ a & 1 & 2 \end{bmatrix} \] where \( I \) is the identity matrix of order \( 3 \times 3 \).
If \( \det\left( (a + 1) \cdot \text{adj}\left( (a - 1) A \right) \right) \) is \( 2^m 3^n \), \( m, n \in \{ 0, 1, 2, \dots, 20 \} \), then \( m + n \) is equal to: