Step 1: Using Einstein’s Mass-Energy Equivalence Formula Einstein’s famous equation relates mass and energy: \[ E = mc^2 \] where:
- \( m = 3.2 \, \mu g = 3.2 \times 10^{-6} \, g = 3.2 \times 10^{-9} \, kg \),
- \( c = 3 \times 10^8 \, m/s \) (speed of light in vacuum).
Step 2: Calculating Energy in Joules \[ E = (3.2 \times 10^{-9}) \times (3 \times 10^8)^2 \] \[ E = (3.2 \times 10^{-9}) \times (9 \times 10^{16}) \] \[ E = 28.8 \times 10^7 \times 10^8 \] \[ E = 28.8 \times 10^{15} \, J \]
Step 3: Converting to MeV Since \( 1 \, J = 6.242 \times 10^{12} \, MeV \), we convert: \[ E = (28.8 \times 10^{15}) \times (6.242 \times 10^{12}) \] \[ E = 1.8 \times 10^{21} \, MeV \] Rounding appropriately, we get: \[ E = 18 \times 10^{20} \, MeV \] Thus, the correct answer is \( \mathbf{(2)} \ 18 \times 10^{20} \, MeV \).
If \[ \int e^x (x^3 + x^2 - x + 4) \, dx = e^x f(x) + C, \] then \( f(1) \) is:
In Bohr model of hydrogen atom, if the difference between the radii of \( n^{th} \) and\( (n+1)^{th} \)orbits is equal to the radius of the \( (n-1)^{th} \) orbit, then the value of \( n \) is: