The center of a disk of radius $ r $ and mass $ m $ is attached to a spring of spring constant $ k $, inside a ring of radius $ R>r $ as shown in the figure. The other end of the spring is attached on the periphery of the ring. Both the ring and the disk are in the same vertical plane. The disk can only roll along the inside periphery of the ring, without slipping. The spring can only be stretched or compressed along the periphery of the ring, following Hooke’s law. In equilibrium, the disk is at the bottom of the ring. Assuming small displacement of the disc, the time period of oscillation of center of mass of the disk is written as $ T = \frac{2\pi}{\omega} $. The correct expression for $ \omega $ is ( $ g $ is the acceleration due to gravity): 
Let $ a_0, a_1, ..., a_{23} $ be real numbers such that $$ \left(1 + \frac{2}{5}x \right)^{23} = \sum_{i=0}^{23} a_i x^i $$ for every real number $ x $. Let $ a_r $ be the largest among the numbers $ a_j $ for $ 0 \leq j \leq 23 $. Then the value of $ r $ is ________.
In thermodynamics, work is a way of energy transfer from a system to surroundings, under the influence of external factors such gravity, electromagnetic forces, pressure/volume etc.
Energy (ΔU) can cross the boundary of a system in two forms -> Work (W) and Heat (q). Both work and heat refer to processes by which energy is transferred to or from a substance.
ΔU=W+q
Work done by a system is defined as the quantity of energy exchanged between a system and its surroundings. It is governed by external factors such as an external force, pressure or volume or change in temperature etc.
Work (W) in mechanics is displacement (d) against a resisting force (F).
Work has units of energy (Joule, J)