In this problem, we need to find the electrostatic potential at the center, at a distance of 5 cm from the center, and at a distance of 15 cm from the center of a uniformly charged spherical shell with a given radius \( R = 10 \, \text{cm} \). The surface potential is 120 V.
The concepts involved in this problem include:
\(V = \frac{kQ}{r}\)
where \( k \) is Coulomb's constant and \( Q \) is the total charge on the shell.
Now, let's calculate the potential at each region mentioned:
\(V = \frac{kQ}{15 \, \text{cm}}\)
where \( V = 120 \, \text{V} \, \text{at} \, r = 10 \, \text{cm} \). Therefore, the potential at 15 cm is less than the surface potential and is calculated by:
\(V_{\text{15 cm}} = \left(\frac{R}{15 \, \text{cm}}\right) \times 120 = \left(\frac{10}{15}\right) \times 120 = 80 \, \text{V}\)
Thus, the potentials are:
The correct option is 120V, 120V, 80V.
To solve this question, we need to determine the electrostatic potential at three different positions relative to a uniformly charged spherical shell. These positions are:
The given information includes:
Now, let's analyze the potential at each point:
Therefore, the potentials at the distinct positions are:
Hence, the correct answer is: 120V, 120V, 80V.
Match List-I with List-II.
Choose the correct answer from the options given below :}
There are three co-centric conducting spherical shells $A$, $B$ and $C$ of radii $a$, $b$ and $c$ respectively $(c>b>a)$ and they are charged with charges $q_1$, $q_2$ and $q_3$ respectively. The potentials of the spheres $A$, $B$ and $C$ respectively are:
Two resistors $2\,\Omega$ and $3\,\Omega$ are connected in the gaps of a bridge as shown in the figure. The null point is obtained with the contact of jockey at some point on wire $XY$. When an unknown resistor is connected in parallel with $3\,\Omega$ resistor, the null point is shifted by $22.5\,\text{cm}$ towards $Y$. The resistance of unknown resistor is ___ $\Omega$. 
Which one of the following graphs accurately represents the plot of partial pressure of CS₂ vs its mole fraction in a mixture of acetone and CS₂ at constant temperature?
