Step 1: Convert units to SI
Position of point P is (30 cm, 30 cm, 0) = (0.3 m, 0.3 m, 0)
Charge \( q = 0.008\, \mu C = 0.008 \times 10^{-6} \, C \)
\[
\frac{1}{4\pi\varepsilon_0} = 9 \times 10^9 \, Nm^2/C^2
\]
Step 2: Find displacement vector from origin to point P
\[
\vec{r} = 0.3 \hat{i} + 0.3 \hat{j} \quad \text{(in meters)}
\]
\[
|\vec{r}| = \sqrt{(0.3)^2 + (0.3)^2} = \sqrt{0.18} = \sqrt{18} \times 0.1 = 0.424 \, m
\]
Step 3: Electric field due to point charge
\[
\vec{E} = \frac{1}{4\pi\varepsilon_0} \cdot \frac{q}{r^2} \cdot \hat{r}
\]
First, calculate \( r^2 = 0.18 \)
\[
E = \frac{9 \times 10^9 \cdot 0.008 \times 10^{-6}}{0.18}
= \frac{72 \times 10^3}{0.18} = 4 \times 10^5 \, N/C
\]
Step 4: Direction of electric field
Since the displacement vector is equal in x and y, the unit vector in that direction is:
\[
\hat{r} = \frac{0.3 \hat{i} + 0.3 \hat{j}}{\sqrt{0.18}} = \frac{1}{\sqrt{2}}(\hat{i} + \hat{j})
\]
Step 5: Final electric field vector
\[
\vec{E} = 4 \times 10^5 \cdot \frac{1}{\sqrt{2}}(\hat{i} + \hat{j}) = 200\sqrt{2} \cdot 10^2 (\hat{i} + \hat{j}) = 200\sqrt{2} (\hat{i} + \hat{j}) \, N/C
\]
Final Answer: \( 200\sqrt{2}(\hat{i} + \hat{j}) \, {N/C} \)