Step 1: Identify the given parameters.
Longitudinal strain, \(\epsilon_L = 0.2\%\)
Poisson's ratio, \(\nu = 0.3\)
Convert the percentage longitudinal strain to a decimal:
\(\epsilon_L = \frac{0.2}{100} = 0.002\)
Step 2: Recall the definitions and relationships of strains.
Longitudinal strain (\(\epsilon_L\)): The fractional change in length, \(\epsilon_L = \frac{\Delta L}{L}\).
Lateral strain (\(\epsilon_T\)): The fractional change in radius (or diameter), \(\epsilon_T = \frac{\Delta R}{R}\).
Poisson's ratio (\(\nu\)): The ratio of lateral strain to longitudinal strain (magnitude), \(\nu = \left|\frac{\text{lateral strain}}{\text{longitudinal strain}}\right| = \left|\frac{\epsilon_T}{\epsilon_L}\right|\).
Since stretching a wire longitudinally causes it to contract laterally, \(\epsilon_T\) will have the opposite sign to \(\epsilon_L\). Thus, \(\epsilon_T = -\nu \epsilon_L\).
Volume strain (\(\epsilon_V\)): The fractional change in volume. For a cylindrical wire with volume \(V = \pi R^2 L\), the volume strain is given by:
\[
\epsilon_V = \frac{\Delta V}{V} = \frac{\Delta L}{L} + 2\frac{\Delta R}{R} = \epsilon_L + 2\epsilon_T
\]
Step 3: Calculate the volume strain.
Substitute the expression for \(\epsilon_T\) into the volume strain formula:
\[
\epsilon_V = \epsilon_L + 2(-\nu \epsilon_L)
\]
\[
\epsilon_V = \epsilon_L (1 - 2\nu)
\]
Now, substitute the given numerical values for \(\epsilon_L\) and \(\nu\):
\[
\epsilon_V = 0.002 (1 - 2 \times 0.3)
\]
\[
\epsilon_V = 0.002 (1 - 0.6)
\]
\[
\epsilon_V = 0.002 (0.4)
\]
\[
\epsilon_V = 0.0008
\]
To express the volume strain as a percentage, multiply by 100%:
\[
\epsilon_V = 0.0008 \times 100\% = 0.08\%
\]
The final answer is \( \boxed{0.08\%} \).