To find the eigenvalues of a matrix, we solve the characteristic equation:
\[
{det}(A - \lambda I) = 0
\]
where \( A \) is the matrix, \( \lambda \) is the eigenvalue, and \( I \) is the identity matrix.
Step 1: Construct the matrix \( A - \lambda I \)
Given the matrix \( A = \begin{bmatrix} 1 & 2
0 & 3 \end{bmatrix} \), we subtract \( \lambda I \) (where \( I \) is the 2x2 identity matrix) from \( A \):
\[
A - \lambda I = \begin{bmatrix} 1 & 2
0 & 3 \end{bmatrix} - \begin{bmatrix} \lambda & 0
0 & \lambda \end{bmatrix} = \begin{bmatrix} 1 - \lambda & 2
0 & 3 - \lambda \end{bmatrix}
\]
Step 2: Find the determinant of \( A - \lambda I \)
Now, compute the determinant of the resulting matrix:
\[
{det}(A - \lambda I) = {det}\begin{bmatrix} 1 - \lambda & 2
0 & 3 - \lambda \end{bmatrix}
\]
The determinant of a 2x2 matrix \( \begin{bmatrix} a & b
c & d \end{bmatrix} \) is given by \( ad - bc \). So, for our matrix:
\[
{det}(A - \lambda I) = (1 - \lambda)(3 - \lambda) - (0)(2) = (1 - \lambda)(3 - \lambda)
\]
Step 3: Solve the characteristic equation
Now, we solve the characteristic equation:
\[
(1 - \lambda)(3 - \lambda) = 0
\]
This gives two solutions:
\[
1 - \lambda = 0 \quad \Rightarrow \quad \lambda = 1
\]
\[
3 - \lambda = 0 \quad \Rightarrow \quad \lambda = 3
\]
Conclusion:
Thus, the eigenvalues of the matrix are \( \lambda = 1 \) and \( \lambda = 3 \).