To find the eigenvalues of the matrix \( \begin{bmatrix} 0 & -i
i & 0 \end{bmatrix} \), we must solve the characteristic equation:
\[
\text{det} \left( \begin{bmatrix} 0 & -i
i & 0 \end{bmatrix} - \lambda I \right) = 0
\]
which simplifies to:
\[
\begin{vmatrix} -\lambda & -i
i & -\lambda \end{vmatrix} = 0
\]
This results in the equation:
\[
\lambda^2 + 1 = 0
\]
Solving for \( \lambda \), we get:
\[
\lambda = \pm i
\]
Thus, the eigenvalues are **\(-1, 1\)**.