Step 1: Let the initial temperature of the source be \( T_S \) and of the sink be \( T_C \).
From the Carnot efficiency formula:
\[
\eta = 1 - \frac{T_C}{T_S}
\]
Given:
\[
\frac{1}{3} = 1 - \frac{T_C}{T_S} \Rightarrow \frac{T_C}{T_S} = \frac{2}{3}
\Rightarrow T_S = \frac{3}{2} T_C
\text{(1)}
\]
Now, after changes:
\[
T_S' = T_S - 50,
T_C' = T_C + 25
\]
New efficiency:
\[
\eta' = 1 - \frac{T_C + 25}{T_S - 50} = \frac{3}{16}
\Rightarrow \frac{T_C + 25}{T_S - 50} = \frac{13}{16}
\text{(2)}
\]
Substitute (1) in (2):
\[
\frac{T_C + 25}{\frac{3}{2}T_C - 50} = \frac{13}{16}
\]
Step 2: Solve the equation:
\[
16(T_C + 25) = 13\left(\frac{3}{2}T_C - 50\right)
\Rightarrow 16T_C + 400 = \frac{39}{2}T_C - 650
\Rightarrow 800 + 1300 = 39T_C - 32T_C
\Rightarrow 7T_C = 2100
\Rightarrow T_C = 300\,\text{K}
\]
% Final Answer
\[
\boxed{300\,\text{K}}
\]