Question:

The $E^{o}$ values of the following reduction reactions are given: $F e^{3+}(a q)+e^{-} \rightarrow F e^{2+}(a q), E^{o}=0.771\, V $ $F e^{2+}(a q)+2 e^{-} \rightarrow F e(s), E^{o}=-0.447\, V$ What will be the free energy change for the reaction? $Fe ^{3+}( aq )+3 e^{-} \rightarrow Fe ( s )\left( F =96485\, C\, mol ^{-1}\right)$

Updated On: Jun 14, 2022
  • $+18.51\, kJ\, mol ^{-1}$
  • $+11.87\, kJ\, mol ^{-1}$
  • $-8.10\, kJ\, mol ^{-1}$
  • $-10.41\, kJ\, mol ^{-1}$
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is B

Solution and Explanation

$F e^{2+}+2 e^{-} \rightarrow F e ; n_{1}=2, E_{1}^{o}=-0.447\, V$
$F e^{3+}+e^{-} \rightarrow F e^{2+} ; n_{2}=1, E_{2}^{o}=0.771\, V$
$F e^{3+}+3 e^{-} \rightarrow F e ; n_{3}=3, E_{3}^{o}=?$
$\Delta G_{3}=\Delta G_{1}+\Delta G_{2} 3 E_{3}^{o}=-2 E_{1}^{o}+E_{2}^{o}$
$E_{3}^{o}=\frac{(-0.477 \times 2)+0.771}{3}=-0.041 V \Delta G^{o}=-n F E^{o}$
$\Delta G^{o}=-3 \times 96485 \times(-0.041\, V )$
$\Delta G^{o}=+11867.65\, mol ^{-1} \simeq+11.87\, kJ\, mol ^{-1}$
Was this answer helpful?
0
0

Top Questions on Gibbs Free Energy

View More Questions

Concepts Used:

Gibbs Free Energy

The energy associated with a chemical reaction that can be used to do work.It is the sum of its enthalpy plus the product of the temperature and the entropy (S) of the system.

The Gibbs free energy is the maximum amount of non-expansion work that can be extracted from a thermodynamically closed system. In completely reversible process maximum enthalpy can be obtained.

ΔG=ΔH−TΔS

The Conditions of Equilibrium

If both it’s intensive properties and extensive properties are constant then thermodynamic system is in equilibrium. Extensive properties imply the U, G, A.