To determine the domain of the function \( f(x) = \ln\left(\frac{1}{\sqrt{x^2-4x+4}}\right) + \sin^{-1}(x^2-2) \), we must analyze the conditions under which each part of the function is defined.
Step 1: Consider \( \ln\left(\frac{1}{\sqrt{x^2-4x+4}}\right) \). The argument of the logarithm must be positive:
\( \frac{1}{\sqrt{x^2-4x+4}} > 0 \), where \( \sqrt{x^2-4x+4} \neq 0 \).
This implies \( x^2-4x+4 \neq 0 \). Observing that \( x^2-4x+4 = (x-2)^2 \), it simplifies to \( x \neq 2 \).
Additionally, since we require the expression under the square root to be non-negative:
\( x^2-4x+4 \geq 0 \).
Simplifying, \( (x-2)^2 \geq 0 \) is always true.
Step 2: Consider \( \sin^{-1}(x^2-2) \). For the inverse sine function, we must have:
\(-1 \leq x^2-2 \leq 1.\)
Simplify the inequalities:
1. \( x^2-2 \geq -1 \) gives \( x^2 \geq 1 \), so \( x \leq -1 \) or \( x \geq 1 \).
2. \( x^2-2 \leq 1 \) gives \( x^2 \leq 3 \), so \(-\sqrt{3} \leq x \leq \sqrt{3}\).
The intersection of conditions from Step 1 and Step 2 is:
\(-\sqrt{3} \leq x \leq \sqrt{3}\) excluding \( x = 2 \), but along with the constraints from the square root and logarithm, only the positive domain is relevant:
\(1 \leq x \leq \sqrt{3}\).
Thus, the domain of the function is \([1, \sqrt{3}]\).
If \( \vec{u}, \vec{v}, \vec{w} \) are non-coplanar vectors and \( p, q \) are real numbers, then the equality:
\[ [3\vec{u} \quad p\vec{v} \quad p\vec{w}] - [p\vec{v} \quad \vec{w} \quad q\vec{u}] - [2\vec{w} \quad q\vec{v} \quad q\vec{u}] = 0 \]
holds for:
Statement-I: In the interval \( [0, 2\pi] \), the number of common solutions of the equations
\[ 2\sin^2\theta - \cos 2\theta = 0 \]
and
\[ 2\cos^2\theta - 3\sin\theta = 0 \]
is two.
Statement-II: The number of solutions of
\[ 2\cos^2\theta - 3\sin\theta = 0 \]
in \( [0, \pi] \) is two.
If \( A \) and \( B \) are acute angles satisfying
\[ 3\cos^2 A + 2\cos^2 B = 4 \]
and
\[ \frac{3 \sin A}{\sin B} = \frac{2 \cos B}{\cos A}, \]
Then \( A + 2B = \ ? \)