The distance of closest approach \( r \) for an alpha particle can be determined using the formula derived from the electrostatic potential energy at the point of closest approach:
\[
E_{\text{kin}} = \frac{1}{4\pi\epsilon_0} \times \frac{2z_1z_2e^2}{r}
\]
where:
- \( E_{\text{kin}} \) is the kinetic energy of the alpha particle,
- \( z_1 = 2 \) is the charge of the alpha particle,
- \( z_2 = 50 \) is the charge of the nucleus,
- \( e \) is the elementary charge (\( 1.602 \times 10^{-19} \, \text{C} \)),
- \( \epsilon_0 = 8.854 \times 10^{-12} \, \text{C}^2/\text{N m}^2 \) is the permittivity of free space.
Given:
\[
E_{\text{kin}} = 6.5 \, \text{MeV} = 6.5 \times 10^6 \times 1.602 \times 10^{-13} \, \text{J} = 1.042 \times 10^{-6} \, \text{J}
\]
Now, substituting the values into the formula:
\[
1.042 \times 10^{-6} = \frac{(2)(50)(1.602 \times 10^{-19})^2}{4 \pi \times 8.854 \times 10^{-12} \times r}
\]
Solving for \( r \):
\[
r = \frac{(2)(50)(1.602 \times 10^{-19})^2}{4 \pi \times 8.854 \times 10^{-12} \times 1.042 \times 10^{-6}} = 0.0221 \, \text{fm}
\]
Thus, the distance of closest approach is \( 0.0221 \, \text{fm} \).