Step 1. Understanding the Given Condition: Since the image is real, inverted, and twice the size of the object, we know:
\( m = \frac{v}{u} = -2 \Rightarrow v = -2u \)
Step 2. Set up Equation Using Total Distance: The distance between the object and the image is 45 cm, so:
\( |v - u| = 45 \, \text{cm} \)
Substitute \( v = -2u \) into the equation:
\( |-2u - u| = 45 \)
\( 3|u| = 45 \Rightarrow u = -15 \, \text{cm} \)
Step 3. Determine Image Distance \( v \): Using \( v = -2u \):
\( v = -2 \times (-15) = 30 \, \text{cm} \)
Step 4. Calculate Focal Length Using Lens Formula: Apply the lens formula:
\( \frac{1}{f} = \frac{1}{v} - \frac{1}{u} \)
Substitute \( u = -15 \, \text{cm} \) and \( v = 30 \, \text{cm} \):
\( \frac{1}{f} = \frac{1}{30} - \frac{1}{-15} = \frac{1}{30} + \frac{1}{15} = \frac{1 + 2}{30} = \frac{3}{30} = \frac{1}{10} \)
\( f = +10 \, \text{cm} \)
Let one focus of the hyperbola $ \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 $ be at $ (\sqrt{10}, 0) $, and the corresponding directrix be $ x = \frac{\sqrt{10}}{2} $. If $ e $ and $ l $ are the eccentricity and the latus rectum respectively, then $ 9(e^2 + l) $ is equal to:
The largest $ n \in \mathbb{N} $ such that $ 3^n $ divides 50! is: