
Step 1. Understanding the Given Condition: Since the image is real, inverted, and twice the size of the object, we know:
\( m = \frac{v}{u} = -2 \Rightarrow v = -2u \)
Step 2. Set up Equation Using Total Distance: The distance between the object and the image is 45 cm, so:
\( |v - u| = 45 \, \text{cm} \)
Substitute \( v = -2u \) into the equation:
\( |-2u - u| = 45 \)
\( 3|u| = 45 \Rightarrow u = -15 \, \text{cm} \)
Step 3. Determine Image Distance \( v \): Using \( v = -2u \):
\( v = -2 \times (-15) = 30 \, \text{cm} \)
Step 4. Calculate Focal Length Using Lens Formula: Apply the lens formula:
\( \frac{1}{f} = \frac{1}{v} - \frac{1}{u} \)
Substitute \( u = -15 \, \text{cm} \) and \( v = 30 \, \text{cm} \):
\( \frac{1}{f} = \frac{1}{30} - \frac{1}{-15} = \frac{1}{30} + \frac{1}{15} = \frac{1 + 2}{30} = \frac{3}{30} = \frac{1}{10} \)
\( f = +10 \, \text{cm} \)
A transparent block A having refractive index $ \mu_2 = 1.25 $ is surrounded by another medium of refractive index $ \mu_1 = 1.0 $ as shown in figure. A light ray is incident on the flat face of the block with incident angle $ \theta $ as shown in figure. What is the maximum value of $ \theta $ for which light suffers total internal reflection at the top surface of the block ?

Given below are two statements. One is labelled as Assertion (A) and the other is labelled as Reason (R):
Assertion (A): An electron in a certain region of uniform magnetic field is moving with constant velocity in a straight line path.
Reason (R): The magnetic field in that region is along the direction of velocity of the electron.
In the light of the above statements, choose the correct answer from the options given below:
The molar conductance of an infinitely dilute solution of ammonium chloride was found to be 185 S cm$^{-1}$ mol$^{-1}$ and the ionic conductance of hydroxyl and chloride ions are 170 and 70 S cm$^{-1}$ mol$^{-1}$, respectively. If molar conductance of 0.02 M solution of ammonium hydroxide is 85.5 S cm$^{-1}$ mol$^{-1}$, its degree of dissociation is given by x $\times$ 10$^{-1}$. The value of x is ______. (Nearest integer)
x mg of Mg(OH)$_2$ (molar mass = 58) is required to be dissolved in 1.0 L of water to produce a pH of 10.0 at 298 K. The value of x is ____ mg. (Nearest integer) (Given: Mg(OH)$_2$ is assumed to dissociate completely in H$_2$O)
Sea water, which can be considered as a 6 molar (6 M) solution of NaCl, has a density of 2 g mL$^{-1}$. The concentration of dissolved oxygen (O$_2$) in sea water is 5.8 ppm. Then the concentration of dissolved oxygen (O$_2$) in sea water, in x $\times$ 10$^{-4}$ m. x = _______. (Nearest integer)
Given: Molar mass of NaCl is 58.5 g mol$^{-1}$Molar mass of O$_2$ is 32 g mol$^{-1}$.