Given Information:
- Displacement from \( t \) to \( t+1 \): \( \Delta x = 125 \, \text{m} \)
- Velocity increase from \( t \) to \( t+1 \): \( \Delta v = 50 \, \text{m/s} \)
Now, Calculate Acceleration:
Using the formula:
\(a = \frac{\Delta v}{\Delta t}\)
Substituting \( \Delta v = 50 \, \text{m/s} \) and \( \Delta t = 1 \, \text{s} \):
\(a = \frac{50}{1} = 50 \, \text{m/s}^2\)
Equation of Motion:
The formula for distance traveled in the \( n \)-th second is:
\(S_n = u + \frac{a}{2} (2n - 1)\)
Find Initial Velocity (\( u \)):
Distance traveled in the \( (t+1) \)-th second is \( S_{t+1} = 125 \, \text{m} \). Substituting \( n = 1 \), \( a = 50 \, \text{m/s}^2 \), and \( S_{t+1} = 125 \):
\(125 = u + \frac{50}{2}(2 \cdot 1 - 1)\)
Simplifying:
\(125 = u + 25\)
\(u = 125 - 25 = 100 \, \text{m/s}\)
Now, Calculate Distance for \( (t+2) \)-th Second:
Substituting \( u = 100 \, \text{m/s} \), \( a = 50 \, \text{m/s}^2 \), and \( n = 2 \) into the equation:
\(S_{t+2} = u + \frac{a}{2}(2 \cdot 2 - 1)\)
Simplifying:
\(S_{t+2} = 100 + \frac{50}{2}(3)\)
\(S_{t+2} = 100 + 25 \times 3\)
\(S_{t+2} = 100 + 75 = 175 \, \text{m}\)
\(\boxed{\text{The distance traveled in the } (t+2)\text{-th second is } 175 \, \text{m}.}\)
Let \[ I(x) = \int \frac{dx}{(x-11)^{\frac{11}{13}} (x+15)^{\frac{15}{13}}} \] If \[ I(37) - I(24) = \frac{1}{4} \left( b^{\frac{1}{13}} - c^{\frac{1}{13}} \right) \] where \( b, c \in \mathbb{N} \), then \[ 3(b + c) \] is equal to:
For the thermal decomposition of \( N_2O_5(g) \) at constant volume, the following table can be formed, for the reaction mentioned below: \[ 2 N_2O_5(g) \rightarrow 2 N_2O_4(g) + O_2(g) \] Given: Rate constant for the reaction is \( 4.606 \times 10^{-2} \text{ s}^{-1} \).