Given Information:
- Displacement from \( t \) to \( t+1 \): \( \Delta x = 125 \, \text{m} \)
- Velocity increase from \( t \) to \( t+1 \): \( \Delta v = 50 \, \text{m/s} \)
Now, Calculate Acceleration:
Using the formula:
\(a = \frac{\Delta v}{\Delta t}\)
Substituting \( \Delta v = 50 \, \text{m/s} \) and \( \Delta t = 1 \, \text{s} \):
\(a = \frac{50}{1} = 50 \, \text{m/s}^2\)
Equation of Motion:
The formula for distance traveled in the \( n \)-th second is:
\(S_n = u + \frac{a}{2} (2n - 1)\)
Find Initial Velocity (\( u \)):
Distance traveled in the \( (t+1) \)-th second is \( S_{t+1} = 125 \, \text{m} \). Substituting \( n = 1 \), \( a = 50 \, \text{m/s}^2 \), and \( S_{t+1} = 125 \):
\(125 = u + \frac{50}{2}(2 \cdot 1 - 1)\)
Simplifying:
\(125 = u + 25\)
\(u = 125 - 25 = 100 \, \text{m/s}\)
Now, Calculate Distance for \( (t+2) \)-th Second:
Substituting \( u = 100 \, \text{m/s} \), \( a = 50 \, \text{m/s}^2 \), and \( n = 2 \) into the equation:
\(S_{t+2} = u + \frac{a}{2}(2 \cdot 2 - 1)\)
Simplifying:
\(S_{t+2} = 100 + \frac{50}{2}(3)\)
\(S_{t+2} = 100 + 25 \times 3\)
\(S_{t+2} = 100 + 75 = 175 \, \text{m}\)
\(\boxed{\text{The distance traveled in the } (t+2)\text{-th second is } 175 \, \text{m}.}\)
The motion of an airplane is represented by the velocity-time graph as shown below. The distance covered by the airplane in the first 30.5 seconds is km.
The least acidic compound, among the following is
Choose the correct set of reagents for the following conversion: