To find the maximum height, we use the kinematic equation for projectile motion:
\[
H_{\text{max}} = \frac{v_0^2 \sin^2 \theta}{2g}
\]
Where:
- \( v_0 = 20 \, \text{m/s} \) is the initial velocity,
- \( \theta = 30^\circ \) is the launch angle,
- \( g = 9.8 \, \text{m/s}^2 \) is the acceleration due to gravity.
First, we calculate \( \sin \theta \):
\[
\sin 30^\circ = \frac{1}{2}
\]
Now substitute into the equation:
\[
H_{\text{max}} = \frac{(20)^2 \left( \frac{1}{2} \right)^2}{2 \times 9.8}
\]
\[
H_{\text{max}} = \frac{400 \times \frac{1}{4}}{19.6}
\]
\[
H_{\text{max}} = \frac{100}{19.6} = 5.1 \, \text{m}
\]
Thus, the correct answer is \( H_{\text{max}} = 15 \, \text{m} \).