Question:

The discrete time Fourier transform of the signal, \( x(n) = 0.5^{(n-1)}u(n-1) \) is ________.

Show Hint

Use DTFT of \( a^n u(n) \) and apply time-shifting property: a shift by \( n_0 \) introduces a factor of \( e^{-j\omega n_0} \).
Updated On: Jun 23, 2025
  • \( \frac{e^{-j\omega}}{1 - 0.5e^{-j\omega}} \)
  • \( e^{-j\omega}(1 - 0.5e^{j\omega}) \)
  • \( \frac{0.5e^{-j\omega}}{1 - 0.5e^{-j\omega}} \)
  • \( \frac{0.5e^{j\omega}}{1 - 0.5e^{j\omega}} \)
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is A

Solution and Explanation

The given signal is: \[ x(n) = 0.5^{n-1} \cdot u(n-1) \] Let us make substitution: \( m = n - 1 \Rightarrow n = m + 1 \). Then: \[ x(n) = 0.5^{n-1}u(n-1) = 0.5^m u(m) \Rightarrow x(m+1) = 0.5^m u(m) \] The DTFT of \( x(n) = a^n u(n) \) is \( \frac{1}{1 - ae^{-j\omega}} \). So for \( 0.5^m u(m) \), we get: \[ X(\omega) = \frac{1}{1 - 0.5e^{-j\omega}} \] Due to time-shifting by 1, DTFT becomes: \[ X(\omega) = e^{-j\omega} \cdot \frac{1}{1 - 0.5e^{-j\omega}} = \frac{e^{-j\omega}}{1 - 0.5e^{-j\omega}} \]
Was this answer helpful?
0
0