The given signal is:
\[
x(n) = 0.5^{n-1} \cdot u(n-1)
\]
Let us make substitution: \( m = n - 1 \Rightarrow n = m + 1 \). Then:
\[
x(n) = 0.5^{n-1}u(n-1) = 0.5^m u(m) \Rightarrow x(m+1) = 0.5^m u(m)
\]
The DTFT of \( x(n) = a^n u(n) \) is \( \frac{1}{1 - ae^{-j\omega}} \). So for \( 0.5^m u(m) \), we get:
\[
X(\omega) = \frac{1}{1 - 0.5e^{-j\omega}}
\]
Due to time-shifting by 1, DTFT becomes:
\[
X(\omega) = e^{-j\omega} \cdot \frac{1}{1 - 0.5e^{-j\omega}} = \frac{e^{-j\omega}}{1 - 0.5e^{-j\omega}}
\]