The equation of the parabola is y$^2$ + 4x + 3 = 0 or$\quad\quad\quad y^{2}=-4\left(x+\frac{3}{4}\right)\quad \quad \quad \quad...\left(1\right)$ The directrix of the parabola $Y^{2}=-4aX\quad \quad \quad \quad \quad \quad \quad \quad \quad \quad... \left(2\right)$ is X = a. On comparing the equation $\left(1\right)$ and $\left(2\right)$, we get$\quad\quad4a = 4\quad$ and $X =x+\frac{3}{4}$ or $\quad \quad a = 1\quad$ and $X =x+\frac{3}{4}$ Hence the directrix of the parabola $\left(1\right)$ is $x+\frac{3}{4}=1 or x-\frac{1}{4}=0.$