\( y = 2x \frac{dy}{dx} + y \left(\frac{dy}{dx}\right)^2 \)
\( y = y \frac{dy}{dx} - x \left(\frac{dy}{dx}\right)^2 \)
\( x = 3 \frac{dy}{dx} + y \left(\frac{dy}{dx}\right)^2 \)
\( y = 3x \frac{dy}{dx} + y^2 \left(\frac{dy}{dx}\right)^2 \)
Hide Solution
Verified By Collegedunia
The Correct Option isA
Solution and Explanation
Given:
\[
y^2 = 4a(x + a)
\]
Differentiating both sides with respect to \( x \):
\[
2y \frac{dy}{dx} = 4a
\]
Solving for \( \frac{dy}{dx} \):
\[
\frac{dy}{dx} = \frac{4a}{2y} = \frac{2a}{y}
\]
Expressing in terms of the differential equation:
\[
y = 2x \frac{dy}{dx} + y \left(\frac{dy}{dx}\right)^2
\]
Thus, the correct answer is:
\[
y = 2x \frac{dy}{dx} + y \left(\frac{dy}{dx}\right)^2
\]