The radius of the n-th orbit in a hydrogen-like atom (atomic number Z) is given by Bohr's model:
\[ r_n = a_0 \frac{n^2}{Z} \]
where \( a_0 \) is the Bohr radius (approximately 52.
9 pm).
For H-atom, \( Z=1 \).
Radius of \(3^{rd}\) orbit: \( r_{H,3} = a_0 \frac{3^2}{1} = 9a_0 \).
Radius of \(2^{nd}\) orbit: \( r_{H,2} = a_0 \frac{2^2}{1} = 4a_0 \).
Difference \( x = r_{H,3} - r_{H,2} = 9a_0 - 4a_0 = 5a_0 \).
For \( \text{Li}^{2+} \) ion, Lithium has atomic number \( Z=3 \).
Radius of \(4^{th}\) orbit: \( r_{Li,4} = a_0 \frac{4^2}{3} = \frac{16}{3}a_0 \).
Radius of \(3^{rd}\) orbit: \( r_{Li,3} = a_0 \frac{3^2}{3} = \frac{9}{3}a_0 = 3a_0 \).
Difference \( y = r_{Li,4} - r_{Li,3} = \frac{16}{3}a_0 - 3a_0 = \left(\frac{16}{3} - \frac{9}{3}\right)a_0 = \frac{16-9}{3}a_0 = \frac{7}{3}a_0 \).
We need the ratio \( y:x \).
\[ \frac{y}{x} = \frac{\frac{7}{3}a_0}{5a_0} = \frac{7/3}{5} = \frac{7}{3 \times 5} = \frac{7}{15} \]
So, \( y:x = 7:15 \).
This matches option (2).