Match the LIST-I with LIST-II.
LIST-I | LIST-II | ||
---|---|---|---|
A. | Pnicogen (group 15) | I. | Ts |
B. | Chalcogen (group 16) | II. | Og |
C. | Halogen (group 17) | III. | Lv |
D. | Noble gas (group 18) | IV. | Mc |
Choose the correct answer from the options given below :
Let's match the families of elements with their corresponding symbols from the given lists, focusing on the most recently named elements in these groups:
A. Pnicogen (group 15): The elements in Group 15 are Nitrogen (N), Phosphorus (P), Arsenic (As), Antimony (Sb), Bismuth (Bi), and Moscovium (Mc). Therefore, Pnicogen matches with Mc. A - IV
B. Chalcogen (group 16): The elements in Group 16 are Oxygen (O), Sulfur (S), Selenium (Se), Tellurium (Te), Polonium (Po), and Livermorium (Lv). Therefore, Chalcogen matches with Lv. B - III
C. Halogen (group 17): The elements in Group 17 are Fluorine (F), Chlorine (Cl), Bromine (Br), Iodine (I), Astatine (At), and Tennessine (Ts). Therefore, Halogen matches with Ts. C - I
D. Noble gas (group 18): The elements in Group 18 are Helium (He), Neon (Ne), Argon (Ar), Krypton (Kr), Xenon (Xe), Radon (Rn), and Oganesson (Og). Therefore, Noble gas matches with Og. D - II
The correct matching is A-IV, B-III, C-I, D-II, which corresponds to option (2).
Let $ P_n = \alpha^n + \beta^n $, $ n \in \mathbb{N} $. If $ P_{10} = 123,\ P_9 = 76,\ P_8 = 47 $ and $ P_1 = 1 $, then the quadratic equation having roots $ \alpha $ and $ \frac{1}{\beta} $ is: