Step 1: Understanding the Rayleigh Criterion. The limit of resolution (θ) of a telescope is given by Rayleigh's criterion: \[ \theta = \frac{1.22 \lambda}{D} \] where: - \( \lambda \) is the wavelength of light (540 nm = \( 540 \times 10^{-9} \) m), - \( D \) is the diameter of the telescope’s objective (3.6 m), - The factor \( 1.22 \) is derived from diffraction theory.
Step 2: Substituting the values. \[ \theta = \frac{1.22 \times 540 \times 10^{-9}}{3.6} \] \[ \theta = \frac{658.8 \times 10^{-9}}{3.6} \] \[ \theta = 1.83 \times 10^{-7} \text{ rad} \] Final Answer: \[ \boxed{1.83 \times 10^{-7} \text{ rad}} \]
The following graph indicates the system containing 1 mole of gas involving various steps. When it moves from Z to X, the type of undergoing process is: