Step 1: Apply the chain rule.
The derivative of \( \tan^{-1}(u) \) is:
\[
\frac{d}{dx} \tan^{-1}(u) = \frac{1}{1 + u^2} \cdot \frac{du}{dx}.
\]
Here, \( u = x^2 \), so \( \frac{du}{dx} = 2x \).
Step 2: Substitute and simplify.
\[
\frac{d}{dx} \tan^{-1}(x^2) = \frac{1}{1 + (x^2)^2} \cdot 2x = \frac{2x}{1 + x^4}.
\]
Step 3: Conclusion.
The derivative is:
\[
\boxed{\frac{2x}{1 + x^4}}.
\]