We need to differentiate: \[ y = \sin^2 \left( \cot^{-1} \left( \frac{1 + x}{\sqrt{1 - x}} \right) \right) \] Step 1: Let \( u = \cot^{-1} \left( \frac{1 + x}{\sqrt{1 - x}} \right) \), so the function simplifies to: \[ y = \sin^2 u \]
Step 2: Differentiate \( y = \sin^2 u \) using the chain rule \[ \frac{d}{dx} \sin^2 u = 2 \sin u \cos u \cdot \frac{du}{dx} = \sin(2u) \cdot \frac{du}{dx} \]
Step 3: Differentiate \( u \) using the derivative of \( \cot^{-1} v \) \[ \frac{du}{dx} = \frac{-1}{1+v^2} \cdot \frac{dv}{dx}, \quad \text{where} \quad v = \frac{1 + x}{\sqrt{1 - x}} \]
Step 4: Compute \( v^2 \) and its derivative \[ v^2 = \frac{(1 + x)^2}{1 - x}, \quad \frac{dv}{dx} = \frac{(1 - x)(2(1 + x)) + (1 + x)^2(1)}{(1 - x)^2} \] After simplification, we obtain: \[ \frac{du}{dx} = -\frac{1}{2} \]
Step 5: Compute sin(2u) . \(\frac{du}{dx}\) \[ \sin(2u) \times \left(-\frac{1}{2} \right) = -\frac{1}{2} \] Thus, the final answer is: \[ \boxed{-\frac{1}{2}} \]
If $ A = \begin{pmatrix} 2 & 2 + p & 2 + p + q \\ 4 & 6 + 2p & 8 + 3p + 2q \\ 6 & 12 + 3p & 20 + 6p + 3q \end{pmatrix} $, then the value of $ \det(\text{adj}(\text{adj}(3A))) = 2^m \cdot 3^n $, then $ m + n $ is equal to:
A settling chamber is used for the removal of discrete particulate matter from air with the following conditions. Horizontal velocity of air = 0.2 m/s; Temperature of air stream = 77°C; Specific gravity of particle to be removed = 2.65; Chamber length = 12 m; Chamber height = 2 m; Viscosity of air at 77°C = 2.1 × 10\(^{-5}\) kg/m·s; Acceleration due to gravity (g) = 9.81 m/s²; Density of air at 77°C = 1.0 kg/m³; Assume the density of water as 1000 kg/m³ and Laminar condition exists in the chamber.
The minimum size of particle that will be removed with 100% efficiency in the settling chamber (in $\mu$m is .......... (round off to one decimal place).
If $ A = \begin{bmatrix} 0 & x & 16 \\ x & 5 & 7 \\ 0 & 9 & x \end{bmatrix} $ is a singular matrix, then $ x $ is equal to
In the given circuit, the rms value of current (\( I_{\text{rms}} \)) through the resistor \( R \) is: