Step 1: Differentiate the given function.
The given function is:
\[
y = \cos(\log x + e^x).
\]
Using the chain rule, the derivative is:
\[
\frac{dy}{dx} = -\sin(\log x + e^x) \cdot \frac{d}{dx}(\log x + e^x).
\]
Step 2: Differentiate \( \log x + e^x \).
The derivative of \( \log x \) is \( \frac{1}{x} \), and the derivative of \( e^x \) is \( e^x \). Therefore:
\[
\frac{d}{dx}(\log x + e^x) = \frac{1}{x} + e^x.
\]
Step 3: Substitute into the derivative.
Substituting \( \frac{d}{dx}(\log x + e^x) \) into the expression for \( \frac{dy}{dx} \), we get:
\[
\frac{dy}{dx} = -\sin(\log x + e^x) \cdot \left( \frac{1}{x} + e^x \right).
\]
Step 4: Evaluate the derivative at \( x = 1 \).
At \( x = 1 \):
\[
\log x = \log 1 = 0, \quad e^x = e^1 = e, \quad \frac{1}{x} = \frac{1}{1} = 1.
\]
Substituting these values:
\[
\frac{dy}{dx} = -\sin(0 + e) \cdot (1 + e) = -(1+e)\sin e.
\]
Thus, the derivative at \( x = 1 \) is \( -(1+e)\sin e \).