The density ($\rho$) of a crystal is related to its unit cell parameters by the formula:
$\rho = \frac{Z \times M}{N_A \times a^3}$
where:
$Z$ = effective number of atoms per unit cell
$M$ = atomic weight (or molar mass in g/mol)
$N_A$ = Avogadro's number ($6.022 \times 10^{23}$ mol$^{-1}$)
$a$ = edge length of the unit cell
We need to find $Z$. Rearranging the formula:
$Z = \frac{\rho \times N_A \times a^3}{M}$.
Given values:
Density $\rho = 0.613 \text{ g cm}^{-3}$.
Edge length $a = 5 \text{ \AA} = 5 \times 10^{-8} \text{ cm}$ (since $1 \text{ \AA} = 10^{-8} \text{ cm}$).
Atomic weight of Na, $M = 23 \text{ u}$, which means molar mass is $23 \text{ g/mol}$.
Avogadro's number $N_A = 6.022 \times 10^{23} \text{ mol}^{-1}$.
First, calculate $a^3$:
$a^3 = (5 \times 10^{-8} \text{ cm})^3 = 5^3 \times (10^{-8})^3 \text{ cm}^3 = 125 \times 10^{-24} \text{ cm}^3$.
Now, substitute all values into the formula for $Z$:
$Z = \frac{(0.613 \text{ g cm}^{-3}) \times (6.022 \times 10^{23} \text{ mol}^{-1}) \times (125 \times 10^{-24} \text{ cm}^3)}{23 \text{ g/mol}}$.
The units g, cm$^{-3}$, mol$^{-1}$, cm$^3$, g/mol will cancel out, leaving $Z$ dimensionless, as expected.
$Z = \frac{0.613 \times 6.022 \times 125 \times 10^{23} \times 10^{-24}}{23}$.
$Z = \frac{0.613 \times 6.022 \times 125 \times 10^{-1}}{23}$.
$Z = \frac{0.613 \times 6.022 \times 12.5}{23}$.
Calculate the numerator:
$0.613 \times 6.022 \approx 3.691$
$3.691 \times 12.5 \approx 46.1375$.
So, $Z \approx \frac{46.1375}{23}$.
$Z \approx 2.0059...$
Since $Z$ must be an integer (representing the number of atoms per unit cell for common crystal structures like BCC, FCC, simple cubic), the value $Z \approx 2.0059$ rounds to $Z=2$.
A value of $Z=2$ corresponds to a body-centered cubic (BCC) structure for an element. Sodium (Na) crystallizes in a BCC structure at room temperature.
This matches option (c).
\[ \boxed{2} \]