Question:

The decomposition of \( NH_3 \) on a platinum surface is a zero-order reaction. What are the rates of production of \( N_2 \) and \( H_2 \) if \( k = 2.5 \times 10^{-4} \, \text{mol L}^{-1} \, \text{s}^{-1} \)?

Show Hint

For zero-order reactions, the rate of product formation is constant and equal to the rate constant. This applies regardless of the concentration of reactants.
Hide Solution
collegedunia
Verified By Collegedunia

Solution and Explanation

To solve the problem, we need to find the rates of production of \( N_2 \) and \( H_2 \) for the zero-order decomposition of \( NH_3 \) on a platinum surface, given the rate constant \( k = 2.5 \times 10^{-4} \, \text{mol L}^{-1} \, \text{s}^{-1} \).

1. Understanding the Reaction and Zero-Order Kinetics:
The decomposition of ammonia (\( NH_3 \)) on a platinum surface can be represented by the balanced chemical equation:

\( 2 NH_3 \rightarrow N_2 + 3 H_2 \)
For a zero-order reaction, the rate of reaction is independent of the concentration of the reactant and is given by:

\( \text{Rate} = k \)
Here, \( k = 2.5 \times 10^{-4} \, \text{mol L}^{-1} \, \text{s}^{-1} \), which represents the rate of decomposition of \( NH_3 \).

2. Rate of Decomposition of \( NH_3 \):
For a zero-order reaction, the rate of reaction is:

\( -\frac{1}{2} \frac{d[NH_3]}{dt} = k = 2.5 \times 10^{-4} \, \text{mol L}^{-1} \, \text{s}^{-1} \)
The coefficient \( \frac{1}{2} \) accounts for the stoichiometry of the reaction (2 moles of \( NH_3 \)). Thus, the rate of consumption of \( NH_3 \) is:

\( \frac{d[NH_3]}{dt} = -2 \times 2.5 \times 10^{-4} = -5.0 \times 10^{-4} \, \text{mol L}^{-1} \, \text{s}^{-1} \)

3. Relating Rates to Stoichiometry:
From the balanced equation \( 2 NH_3 \rightarrow N_2 + 3 H_2 \), the rates of production of \( N_2 \) and \( H_2 \) are related to the rate of consumption of \( NH_3 \). The stoichiometric coefficients give:

\( -\frac{1}{2} \frac{d[NH_3]}{dt} = \frac{d[N_2]}{dt} = \frac{1}{3} \frac{d[H_2]}{dt} \)
Since the rate of reaction is \( k \), we have:

\( \frac{d[N_2]}{dt} = k = 2.5 \times 10^{-4} \, \text{mol L}^{-1} \, \text{s}^{-1} \)

4. Calculating the Rate of Production of \( H_2 \):
Using the stoichiometric relationship:

\( \frac{d[H_2]}{dt} = 3 \times \frac{d[N_2]}{dt} = 3 \times k \)
Substitute \( k \):

\( \frac{d[H_2]}{dt} = 3 \times 2.5 \times 10^{-4} = 7.5 \times 10^{-4} \, \text{mol L}^{-1} \, \text{s}^{-1} \)

Final Answer:
The rate of production of \( N_2 \) is \( 2.5 \times 10^{-4} \, \text{mol L}^{-1} \, \text{s}^{-1} \), and the rate of production of \( H_2 \) is \( 7.5 \times 10^{-4} \, \text{mol L}^{-1} \, \text{s}^{-1} \).

Was this answer helpful?
0
0

Questions Asked in CBSE CLASS XII exam

View More Questions