The de Broglie wavelength (\( \lambda \)) of a particle is given by the equation:
\[
\lambda = \frac{h}{mv}
\]
Where:
- \( h = 6.626 \times 10^{-34} \, \text{J.s} \) (Planck's constant)
- \( m = 9.1 \times 10^{-31} \, \text{kg} \) (mass of the electron)
- \( v = 0.2c \) (velocity of the electron, 20% of speed of light)
Given \( c = 3 \times 10^8 \, \text{m/s} \), we have:
\[
v = 0.2 \times 3 \times 10^8 = 6 \times 10^7 \, \text{m/s}
\]
Substituting the values:
\[
\lambda = \frac{6.626 \times 10^{-34}}{(9.1 \times 10^{-31})(6 \times 10^7)} = 1.2 \times 10^{-11} \, \text{m}
\]
Thus, the de Broglie wavelength is \( 1.2 \times 10^{-11} \, \text{m} \).