The emf (\( \varepsilon \)) induced in an inductor is related to the rate of change of current and self-inductance (\( L \)) by the formula:
\[ |\varepsilon| = L \frac{dI}{dt}. \]
Step 1: Determine the rate of change of current
The given current is:
\[ I = 3t + 8. \]
Differentiate \( I \) with respect to \( t \):
\[ \frac{dI}{dt} = 3 \, \text{A/s}. \]
Step 2: Substitute the given values
The magnitude of induced emf is \( |\varepsilon| = 12 \, \text{mV} = 12 \times 10^{-3} \, \text{V} \). Substituting into the formula:
\[ 12 \times 10^{-3} = L \cdot 3. \]
Step 3: Solve for \( L \)
Rearrange to find \( L \):
\[ L = \frac{12 \times 10^{-3}}{3} = 4 \times 10^{-3} \, \text{H}. \]
Convert to millihenries:
\[ L = 4 \, \text{mH}. \]
Thus, the self-inductance of the inductor is \( L = 4 \, \text{mH} \).
Let $ P_n = \alpha^n + \beta^n $, $ n \in \mathbb{N} $. If $ P_{10} = 123,\ P_9 = 76,\ P_8 = 47 $ and $ P_1 = 1 $, then the quadratic equation having roots $ \alpha $ and $ \frac{1}{\beta} $ is: