The emf (\( \varepsilon \)) induced in an inductor is related to the rate of change of current and self-inductance (\( L \)) by the formula:
\[ |\varepsilon| = L \frac{dI}{dt}. \]
Step 1: Determine the rate of change of current
The given current is:
\[ I = 3t + 8. \]
Differentiate \( I \) with respect to \( t \):
\[ \frac{dI}{dt} = 3 \, \text{A/s}. \]
Step 2: Substitute the given values
The magnitude of induced emf is \( |\varepsilon| = 12 \, \text{mV} = 12 \times 10^{-3} \, \text{V} \). Substituting into the formula:
\[ 12 \times 10^{-3} = L \cdot 3. \]
Step 3: Solve for \( L \)
Rearrange to find \( L \):
\[ L = \frac{12 \times 10^{-3}}{3} = 4 \times 10^{-3} \, \text{H}. \]
Convert to millihenries:
\[ L = 4 \, \text{mH}. \]
Thus, the self-inductance of the inductor is \( L = 4 \, \text{mH} \).
Draw the pattern of the magnetic field lines for the two parallel straight conductors carrying current of same magnitude 'I' in opposite directions as shown. Show the direction of magnetic field at a point O which is equidistant from the two conductors. (Consider that the conductors are inserted normal to the plane of a rectangular cardboard.)
Given below are two statements: one is labelled as Assertion (A) and the other is labelled as Reason (R).
Assertion (A): Choke coil is simply a coil having a large inductance but a small resistance. Choke coils are used with fluorescent mercury-tube fittings. If household electric power is directly connected to a mercury tube, the tube will be damaged.
Reason (R): By using the choke coil, the voltage across the tube is reduced by a factor \( \frac{R}{\sqrt{R^2 + \omega^2 L^2}} \), where \( \omega \) is the frequency of the supply across resistor \( R \) and inductor \( L \). If the choke coil were not used, the voltage across the resistor would be the same as the applied voltage.
In light of the above statements, choose the most appropriate answer from the options given below:
Figure shows a current carrying square loop ABCD of edge length is $ a $ lying in a plane. If the resistance of the ABC part is $ r $ and that of the ADC part is $ 2r $, then the magnitude of the resultant magnetic field at the center of the square loop is: 
Let one focus of the hyperbola \( H : \dfrac{x^2}{a^2} - \dfrac{y^2}{b^2} = 1 \) be at \( (\sqrt{10}, 0) \) and the corresponding directrix be \( x = \dfrac{9}{\sqrt{10}} \). If \( e \) and \( l \) respectively are the eccentricity and the length of the latus rectum of \( H \), then \( 9 \left(e^2 + l \right) \) is equal to:
