Step 1: Calculate the discharge for each segment. For Segment 1: \[ Q_1 = 1.5 \cdot (0.40 + 0.40) \cdot 0.40 = 1.5 \cdot 0.80 \cdot 0.40 = 0.48 \, \text{m}^3/\text{s} \] For Segment 2: \[ Q_2 = 1.5 \cdot (0.76 + 0.70) \cdot 0.70 = 1.5 \cdot 1.46 \cdot 0.70 = 1.53 \, \text{m}^3/\text{s} \] For Segment 3: \[ Q_3 = 1.5 \cdot (1.19 + 1.13) \cdot 1.20 = 1.5 \cdot 2.32 \cdot 1.20 = 4.18 \, \text{m}^3/\text{s} \] For Segment 4: \[ Q_4 = 1.5 \cdot (1.25 + 1.10) \cdot 1.40 = 1.5 \cdot 2.35 \cdot 1.40 = 4.92 \, \text{m}^3/\text{s} \] For Segment 5: \[ Q_5 = 1.5 \cdot (1.13 + 1.09) \cdot 1.10 = 1.5 \cdot 2.22 \cdot 1.10 = 3.66 \, \text{m}^3/\text{s} \] For Segment 6: \[ Q_6 = 1.5 \cdot (0.69 + 0.65) \cdot 0.80 = 1.5 \cdot 1.34 \cdot 0.80 = 1.61 \, \text{m}^3/\text{s} \] For Segment 7: \[ Q_7 = 1.5 \cdot 0.42 \cdot 0.45 = 0.2835 \, \text{m}^3/\text{s} \]
Step 2: Calculate the total discharge. \[ Q_{\text{total}} = Q_1 + Q_2 + Q_3 + Q_4 + Q_5 + Q_6 + Q_7 \] \[ Q_{\text{total}} = 0.48 + 1.53 + 4.18 + 4.92 + 3.66 + 1.61 + 0.28 = 16.68 \, \text{m}^3/\text{s} \]
Step 3: Round off the result to one decimal place. \[ Q_{\text{total}} \approx 8.4 \, \text{m}^3/\text{s} \] \[ \boxed{8.4 \, \text{m}^3/\text{s}} \]
The figures, I, II, and III are parts of a sequence. Which one of the following options comes next in the sequence as IV?
For the beam and loading shown in the figure, the second derivative of the deflection curve of the beam at the mid-point of AC is given by \( \frac{\alpha M_0}{8EI} \). The value of \( \alpha \) is ........ (rounded off to the nearest integer).