Step 1: Calculate the discharge for each segment. For Segment 1: \[ Q_1 = 1.5 \cdot (0.40 + 0.40) \cdot 0.40 = 1.5 \cdot 0.80 \cdot 0.40 = 0.48 \, \text{m}^3/\text{s} \] For Segment 2: \[ Q_2 = 1.5 \cdot (0.76 + 0.70) \cdot 0.70 = 1.5 \cdot 1.46 \cdot 0.70 = 1.53 \, \text{m}^3/\text{s} \] For Segment 3: \[ Q_3 = 1.5 \cdot (1.19 + 1.13) \cdot 1.20 = 1.5 \cdot 2.32 \cdot 1.20 = 4.18 \, \text{m}^3/\text{s} \] For Segment 4: \[ Q_4 = 1.5 \cdot (1.25 + 1.10) \cdot 1.40 = 1.5 \cdot 2.35 \cdot 1.40 = 4.92 \, \text{m}^3/\text{s} \] For Segment 5: \[ Q_5 = 1.5 \cdot (1.13 + 1.09) \cdot 1.10 = 1.5 \cdot 2.22 \cdot 1.10 = 3.66 \, \text{m}^3/\text{s} \] For Segment 6: \[ Q_6 = 1.5 \cdot (0.69 + 0.65) \cdot 0.80 = 1.5 \cdot 1.34 \cdot 0.80 = 1.61 \, \text{m}^3/\text{s} \] For Segment 7: \[ Q_7 = 1.5 \cdot 0.42 \cdot 0.45 = 0.2835 \, \text{m}^3/\text{s} \]
Step 2: Calculate the total discharge. \[ Q_{\text{total}} = Q_1 + Q_2 + Q_3 + Q_4 + Q_5 + Q_6 + Q_7 \] \[ Q_{\text{total}} = 0.48 + 1.53 + 4.18 + 4.92 + 3.66 + 1.61 + 0.28 = 16.68 \, \text{m}^3/\text{s} \]
Step 3: Round off the result to one decimal place. \[ Q_{\text{total}} \approx 8.4 \, \text{m}^3/\text{s} \] \[ \boxed{8.4 \, \text{m}^3/\text{s}} \]
Two soils of permeabilities \( k_1 \) and \( k_2 \) are placed in a horizontal flow apparatus, as shown in the figure. For Soil 1, \( L_1 = 50 \, {cm} \), and \( k_1 = 0.055 \, {cm/s} \); for Soil 2, \( L_2 = 30 \, {cm} \), and \( k_2 = 0.035 \, {cm/s} \). The cross-sectional area of the horizontal pipe is 100 cm², and the head difference (\( \Delta h \)) is 150 cm. The discharge (in cm³/s) through the soils is ........ (rounded off to 2 decimal places).

The most suitable test for measuring the permeability of clayey soils in the laboratory is ___________.
Consider the beam ACDEB given in the figure. Which of the following statements is/are correct:

The figures, I, II, and III are parts of a sequence. Which one of the following options comes next in the sequence as IV?
