A group 15 element forms \( d\pi - d\pi \) bond with transition metals. It also forms a hydride, which is the strongest base among the hydrides of other group members that form \( d\pi - d\pi \) bonds. The atomic number of the element is …….
For the AC circuit shown in the figure, $ R = 100 \, \text{k}\Omega $ and $ C = 100 \, \text{pF} $, and the phase difference between $ V_{\text{in}} $ and $ (V_B - V_A) $ is 90°. The input signal frequency is $ 10^x $ rad/sec, where $ x $ is:
Two parabolas have the same focus $(4, 3)$ and their directrices are the $x$-axis and the $y$-axis, respectively. If these parabolas intersect at the points $A$ and $B$, then $(AB)^2$ is equal to:
A point particle of charge \( Q \) is located at \( P \) along the axis of an electric dipole 1 at a distance \( r \) as shown in the figure. The point \( P \) is also on the equatorial plane of a second electric dipole 2 at a distance \( r \). The dipoles are made of opposite charge \( q \) separated by a distance \( 2a \). For the charge particle at \( P \) not to experience any net force, which of the following correctly describes the situation?

The ones that are anions of a hydrogen atom are hydrides. Hydrogen can act or respond to different elements of the periodic desk. Nucleophilic, decreasing, and fundamental properties may be found in the interior of the chemicals of hydrogen, and hydride. Hydride compounds are devised with all factors of the periodic table, excluding a few noble gases. Hydrides are common compounds of hydrogen but with lesser electronegative elements.
Depending upon the evolution of a chemical bond and the elements that can act with the hydrogen atoms, there are three types of hydrides: