Two concentric thin circular rings of radii 50 cm and 40 cm each, carry a current of 3.5 A in opposite directions. If the two rings are coplanar, the net magnetic field due to the two rings at their centre is:
If the roots of $\sqrt{\frac{1 - y}{y}} + \sqrt{\frac{y}{1 - y}} = \frac{5}{2}$ are $\alpha$ and $\beta$ ($\beta > \alpha$) and the equation $(\alpha + \beta)x^4 - 25\alpha \beta x^2 + (\gamma + \beta - \alpha) = 0$ has real roots, then a possible value of $y$ is:
Halogens are the group 17 elements of the periodic table. The term ‘halogen’ means ‘salt-producing’, hence the name halogens as they possess the tendency to form salts after reacting to metals. It generally has five elements:
These are all naturally occurring halogens but Tennessine (Ts) is an artificially created halogen.
Halogens are highly reactive elements and are highly electronegative. They have a high tendency to react with metals to form salts. They are also known as Group 17 elements. They have 7 electrons in their outer shell with a configuration of (ns2 np5). Fluorine being the first halogen in group 17, is highly reactive. Astatine is a halogen because of its resemblance with iodine despite it being radioactive.
The general electronic configuration for group 17 elements is ns2np5. This configuration clearly shows that they have 7 electrons in their valence shell. They require one more electron to complete their octet and achieve noble gas configuration.
