We are given the vertices of the triangle \( A(-2, 3, 6) \), \( B(-4, 4, 9) \), and \( C(0, 5, 8) \), and we are asked to find the direction cosines of the median \( BE \), where \( E \) is the midpoint of the side \( AC \).
Step 1: Find the coordinates of the midpoint \( E \) of \( AC \).
The midpoint formula in three dimensions is:
\[
E = \left( \frac{x_A + x_C}{2}, \frac{y_A + y_C}{2}, \frac{z_A + z_C}{2} \right)
\]
Substituting the coordinates of \( A(-2, 3, 6) \) and \( C(0, 5, 8) \):
\[
E = \left( \frac{-2 + 0}{2}, \frac{3 + 5}{2}, \frac{6 + 8}{2} \right) = \left( -1, 4, 7 \right)
\]
Step 2: Find the direction ratios of the median \( BE \).
The direction ratios of the median \( BE \) are the differences between the coordinates of \( B(-4, 4, 9) \) and \( E(-1, 4, 7) \):
\[
\text{Direction ratios of } BE = (x_B - x_E, y_B - y_E, z_B - z_E) = (-4 - (-1), 4 - 4, 9 - 7) = (-3, 0, 2)
\]
Step 3: Find the direction cosines of \( BE \).
The direction cosines are the normalized direction ratios. The magnitude of the direction ratios is:
\[
\text{Magnitude} = \sqrt{(-3)^2 + 0^2 + 2^2} = \sqrt{9 + 4} = \sqrt{13}
\]
Thus, the direction cosines of \( BE \) are:
\[
\left\langle \frac{-3}{\sqrt{13}}, \frac{0}{\sqrt{13}}, \frac{2}{\sqrt{13}} \right\rangle = \left\langle \frac{3}{\sqrt{13}}, 0, -\frac{2}{\sqrt{13}} \right\rangle
\]
Therefore, the correct answer is option (D)