Step 1: Applying the Direction Cosine Identity
The identity for the sum of the squares of the direction cosines states:
\[
\cos^2\alpha + \cos^2\beta + \cos^2\gamma = 1
\]
Step 2: Substituting the Given Values
Substitute the known values into the equation:
\[
\cos^2(60^\circ) + \cos^2(45^\circ) + \cos^2\gamma = 1
\]
\[
\left( \frac{1}{4} \right) + \left( \frac{1}{2} \right) + \cos^2\gamma = 1
\]
\[
\cos^2\gamma = \frac{1}{4}
\]
\[
\gamma = 60^\circ { or } 120^\circ
\]
Was this answer helpful?
0
0
Top Questions on Direction Cosines and Direction Ratios of a Line