Concept: The centroid of a triangle is the point of intersection of its medians. If the vertices of the triangle are \((x_1, y_1)\), \((x_2, y_2)\), and \((x_3, y_3)\), then the coordinates of the centroid \((G_x, G_y)\) are given by the formulas:
\[ G_x = \frac{x_1 + x_2 + x_3}{3} \]
\[ G_y = \frac{y_1 + y_2 + y_3}{3} \]
Step 1: Identify the coordinates of the vertices
Let the vertices be:
\((x_1, y_1) = (1, 3)\)
\((x_2, y_2) = (-2, 7)\)
\((x_3, y_3) = (5, -3)\)
Step 2: Calculate the x-coordinate of the centroid (\(G_x\))
\[ G_x = \frac{1 + (-2) + 5}{3} \]
\[ G_x = \frac{1 - 2 + 5}{3} \]
\[ G_x = \frac{-1 + 5}{3} \]
\[ G_x = \frac{4}{3} \]
Step 3: Calculate the y-coordinate of the centroid (\(G_y\))
\[ G_y = \frac{3 + 7 + (-3)}{3} \]
\[ G_y = \frac{3 + 7 - 3}{3} \]
\[ G_y = \frac{10 - 3}{3} \]
\[ G_y = \frac{7}{3} \]
Step 4: Write the coordinates of the centroid
The coordinates of the centroid are \((G_x, G_y) = \left(\frac{4}{3}, \frac{7}{3}\right)\).
This matches option (2).