The torque \( \tau \) is given by the cross product of position vector \( \mathbf{r} \) and the force \( \mathbf{F} \):
\[
\tau = \mathbf{r} \times \mathbf{F}
\]
where \( \mathbf{r} = \langle 1, 1, 1 \rangle \) and \( \mathbf{F} = \langle 1, -1, 1 \rangle \).
The torque in the \( z \)-direction is the \( z \)-component of the cross product:
\[
\tau_z = \hat{k} \cdot (\mathbf{r} \times \mathbf{F})
\]
Using the determinant formula for the cross product, we get:
\[
\tau_z = \hat{k} \cdot \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & 1 & 1 \\ 1 & -1 & 1 \end{vmatrix}
\]
After solving, we find:
\[
\tau_z = 1
\]
Thus, the correct answer is \( 1 \).