Structures of Sulfuric Acid Derivatives
1. Structure of \( \text{H}_2\text{S}_2\text{O}_7 \) (Pyrosulfuric Acid):
No peroxide linkage present.
2. Structure of \( \text{H}_2\text{S}_2\text{O}_8 \) (Peroxydisulfuric Acid):
Contains an \( -\text{O-O}- \) (peroxide) linkage.
3. Structure of \( \text{H}_2\text{S}_2\text{O}_5 \) (Pyro Sulfurous Acid):
No peroxide linkage present.
4. Structure of \( \text{H}_2\text{SO}_5 \) (Peroxomonosulfuric Acid):
Contains an \( -\text{O-O}- \) (peroxide) linkage.
To solve the problem, identify which compound(s) contain a peroxide (–O–O–) linkage.
Analysis of compounds:
Final Answer:
Compounds with peroxide linkage are:
\[
\boxed{\text{H}_2\text{S}_2\text{O}_8 \text{ and } \text{H}_2\text{SO}_5}
\]
Let $ y(x) $ be the solution of the differential equation $$ x^2 \frac{dy}{dx} + xy = x^2 + y^2, \quad x > \frac{1}{e}, $$ satisfying $ y(1) = 0 $. Then the value of $ 2 \cdot \frac{(y(e))^2}{y(e^2)} $ is ________.
Let $ \mathbb{R} $ denote the set of all real numbers. Then the area of the region $$ \left\{ (x, y) \in \mathbb{R} \times \mathbb{R} : x > 0, y > \frac{1}{x},\ 5x - 4y - 1 > 0,\ 4x + 4y - 17 < 0 \right\} $$ is