Let \( \Omega \) be a non-empty open connected subset of \( \mathbb{C} \) and \( f: \Omega \to \mathbb{C} \) be a non-constant function. Let the functions \( f^2: \Omega \to \mathbb{C} \) and \( f^3: \Omega \to \mathbb{C} \) be defined by \[ f^2(z) = (f(z))^2 \quad {and} \quad f^3(z) = (f(z))^3, \quad z \in \Omega. \]
Consider the following two statements:
S1: If \( f \) is continuous in \( \Omega \) and \( f^2 \) is analytic in \( \Omega \), then \( f \) is analytic in \( \Omega \).
S2: If \( f^2 \) and \( f^3 \) are analytic in \( \Omega \), then \( f \) is analytic in \( \Omega \). Then, which one of the following is correct?
Let \( U = \{z \in \mathbb{C}: \operatorname{Im}(z) > 0\} \) and \( D = \{z \in \mathbb{C}: |z| < 1\} \), where \( \operatorname{Im}(z) \) denotes the imaginary part of \( z \).
Let \( S \) be the set of all bijective analytic functions \( f: U \to D \) such that \( f(i) = 0 \).
Then, the value of \( \sup_{f \in S} |f(4i)| \) is:
x | 0 | 1 | 2 | 3 | 4 |
---|---|---|---|---|---|
y(x) | 1 | 3 | 6 | 9 | 12 |
A wheel of mass \( 4M \) and radius \( R \) is made of a thin uniform distribution of mass \( 3M \) at the rim and a point mass \( M \) at the center. The spokes of the wheel are massless. The center of mass of the wheel is connected to a horizontal massless rod of length \( 2R \), with one end fixed at \( O \), as shown in the figure. The wheel rolls without slipping on horizontal ground with angular speed \( \Omega \). If \( \vec{L} \) is the total angular momentum of the wheel about \( O \), then the magnitude \( \left| \frac{d\vec{L}}{dt} \right| = N(MR^2 \Omega^2) \). The value of \( N \) (in integer) is:
The figure shows an opamp circuit with a 5.1 V Zener diode in the feedback loop. The opamp runs from \( \pm 15 \, {V} \) supplies. If a \( +1 \, {V} \) signal is applied at the input, the output voltage (rounded off to one decimal place) is: