Step 1: The Hamiltonian of the system is given as \( H = -\hbar \omega \sigma_y \), and the electron is initially in the spin-up state
\[
\begin{pmatrix} 1 \\ 0 \end{pmatrix}
\]
at \( t = 0 \).
Step 2: The evolution of the spin state is governed by the time evolution operator:
\[
|\psi(t)\rangle = e^{-\frac{i}{\hbar} H t} |\psi(0)\rangle.
\]
For the Hamiltonian \( H = -\hbar \omega \sigma_y \), this becomes:
\[
|\psi(t)\rangle = e^{i \omega \sigma_y t}
\begin{pmatrix} 1 \\ 0 \end{pmatrix}.
\]
Step 3: The exponential of the Pauli matrix \( \sigma_y \) can be written as:
\[
e^{i \omega \sigma_y t} = \cos(\omega t) I + i \sin(\omega t) \sigma_y,
\]
where \( I \) is the identity matrix and \( \sigma_y \) is the Pauli matrix. Applying this to the initial state:
\[
|\psi(t)\rangle = \cos(\omega t)
\begin{pmatrix} 1 \\ 0 \end{pmatrix}
+ i \sin(\omega t)
\begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}
\begin{pmatrix} 1 \\ 0 \end{pmatrix}.
\]
This simplifies to:
\[
|\psi(t)\rangle =
\begin{pmatrix} \cos(\omega t) \\ -i \sin(\omega t) \end{pmatrix}.
\]
Step 4: The electron will be in the spin-down state along the \( x \)-axis, i.e.,
\[
\frac{1}{\sqrt{2}}
\begin{pmatrix} 1 \\ -1 \end{pmatrix},
\]
when:
\[
\cos(\omega t) = \frac{1}{\sqrt{2}}, \quad -i \sin(\omega t) = \frac{-1}{\sqrt{2}}.
\]
This occurs at \( \omega t = \frac{\pi}{4} \), so the minimum time is:
\[
t = \frac{\pi}{4\omega}.
\]