The coercivity of the magnet is given by:
\[H_c = \mu_0 \frac{ni}{\mu_0},\]
where:
\[H_c = 5 \times 10^3 \, \text{A/m}, \quad n = \frac{\text{Number of turns}}{\text{Length of solenoid}} = \frac{150}{0.3} = 500 \, \text{turns/m}.\]
Substitute into the formula:
\[5 \times 10^3 = 500 \times i.\]
Solve for \(i\):
\[i = \frac{5 \times 10^3}{500} = 10 \, \text{A}.\]
Thus, the current required is:
\[i = 10 \, \text{A}.\]
Let $ P_n = \alpha^n + \beta^n $, $ n \in \mathbb{N} $. If $ P_{10} = 123,\ P_9 = 76,\ P_8 = 47 $ and $ P_1 = 1 $, then the quadratic equation having roots $ \alpha $ and $ \frac{1}{\beta} $ is: