\[ x^2(1+x)^{98} + x^3(1+x)^{97} + x^4(1+x)^{96} + …… + x^{54}(1+x)^{46} \]
The coefficient of \(x^{70}\) is:
\[ ^{98}C_{68} + ^{97}C_{67} + ^{96}C_{66} + \cdots \]
Simplify:
\[ ^{47}C_{17} + ^{46}C_{16} \]
Combine terms:
\[ {^{46}}C_{30} + {^{46}}C_{31} + ^{47}C_30 + \cdots \]
Using binomial expansion:
\[ {^{47}}C_{30} + \cdots = ^{99}C_p - ^{46}C_q \]
Possible values of \(p+q\):
\[ p+q = 62, 83, 99, 46 \]
Final Answer:
\[ p+q = 83 \quad \text{Option (4)}. \]
Let A be a 3 × 3 matrix such that \(\text{det}(A) = 5\). If \(\text{det}(3 \, \text{adj}(2A)) = 2^{\alpha \cdot 3^{\beta} \cdot 5^{\gamma}}\), then \( (\alpha + \beta + \gamma) \) is equal to: