Given:
\( S = x^2(1 + x)^{98} + x^3(1 + x)^{97} + x^4(1 + x)^{96} + \ldots + x^{54}(1 + x)^{46} \)
It is a geometric progression (G.P.).
Therefore,
\( S = x^2(1 + x)^{98} \left[ \frac{\left( \frac{x}{1 + x} \right)^{53} - 1}{\frac{x}{1 + x} - 1} \right] \)
Now, the coefficient of \( x^{70} \) in \( S \) will be:
\( S = x^2(1 + x)^{46} \left[ (1 + x)^{53} - x^{53} \right] \)
The coefficient of \( x^{70} \) in \( S \) is obtained from:
\( S = x^2(1 + x)^{99} - x^{55}(1 + x)^{46} \)
Hence, the required coefficient is:
\( S = {}^{99}C_{68} - {}^{46}C_{15} = {}^{99}C_{p} - {}^{46}C_{q} \)
From this,
\( p = 68, \quad q = 15 \)
Therefore,
\( p + q = 83 \)
\[ x^2(1+x)^{98} + x^3(1+x)^{97} + x^4(1+x)^{96} + …… + x^{54}(1+x)^{46} \]
The coefficient of \(x^{70}\) is:
\[ ^{98}C_{68} + ^{97}C_{67} + ^{96}C_{66} + \cdots \]
Simplify:
\[ ^{47}C_{17} + ^{46}C_{16} \]
Combine terms:
\[ {^{46}}C_{30} + {^{46}}C_{31} + ^{47}C_30 + \cdots \]
Using binomial expansion:
\[ {^{47}}C_{30} + \cdots = ^{99}C_p - ^{46}C_q \]
Possible values of \(p+q\):
\[ p+q = 62, 83, 99, 46 \]
Final Answer:
\[ p+q = 83 \quad \text{Option (4)}. \]
\[ \left( \frac{1}{{}^{15}C_0} + \frac{1}{{}^{15}C_1} \right) \left( \frac{1}{{}^{15}C_1} + \frac{1}{{}^{15}C_2} \right) \cdots \left( \frac{1}{{}^{15}C_{12}} + \frac{1}{{}^{15}C_{13}} \right) = \frac{\alpha^{13}}{{}^{14}C_0 \, {}^{14}C_1 \cdots {}^{14}C_{12}} \]
Then \[ 30\alpha = \underline{\hspace{1cm}} \]
In the given figure, the blocks $A$, $B$ and $C$ weigh $4\,\text{kg}$, $6\,\text{kg}$ and $8\,\text{kg}$ respectively. The coefficient of sliding friction between any two surfaces is $0.5$. The force $\vec{F}$ required to slide the block $C$ with constant speed is ___ N.
(Given: $g = 10\,\text{m s}^{-2}$) 
Method used for separation of mixture of products (B and C) obtained in the following reaction is: 