Given:
\( S = x^2(1 + x)^{98} + x^3(1 + x)^{97} + x^4(1 + x)^{96} + \ldots + x^{54}(1 + x)^{46} \)
It is a geometric progression (G.P.).
Therefore,
\( S = x^2(1 + x)^{98} \left[ \frac{\left( \frac{x}{1 + x} \right)^{53} - 1}{\frac{x}{1 + x} - 1} \right] \)
Now, the coefficient of \( x^{70} \) in \( S \) will be:
\( S = x^2(1 + x)^{46} \left[ (1 + x)^{53} - x^{53} \right] \)
The coefficient of \( x^{70} \) in \( S \) is obtained from:
\( S = x^2(1 + x)^{99} - x^{55}(1 + x)^{46} \)
Hence, the required coefficient is:
\( S = {}^{99}C_{68} - {}^{46}C_{15} = {}^{99}C_{p} - {}^{46}C_{q} \)
From this,
\( p = 68, \quad q = 15 \)
Therefore,
\( p + q = 83 \)
\[ x^2(1+x)^{98} + x^3(1+x)^{97} + x^4(1+x)^{96} + …… + x^{54}(1+x)^{46} \]
The coefficient of \(x^{70}\) is:
\[ ^{98}C_{68} + ^{97}C_{67} + ^{96}C_{66} + \cdots \]
Simplify:
\[ ^{47}C_{17} + ^{46}C_{16} \]
Combine terms:
\[ {^{46}}C_{30} + {^{46}}C_{31} + ^{47}C_30 + \cdots \]
Using binomial expansion:
\[ {^{47}}C_{30} + \cdots = ^{99}C_p - ^{46}C_q \]
Possible values of \(p+q\):
\[ p+q = 62, 83, 99, 46 \]
Final Answer:
\[ p+q = 83 \quad \text{Option (4)}. \]
The term independent of $ x $ in the expansion of $$ \left( \frac{x + 1}{x^{3/2} + 1 - \sqrt{x}} \cdot \frac{x + 1}{x - \sqrt{x}} \right)^{10} $$ for $ x>1 $ is:
Let $ (1 + x + x^2)^{10} = a_0 + a_1 x + a_2 x^2 + ... + a_{20} x^{20} $. If $ (a_1 + a_3 + a_5 + ... + a_{19}) - 11a_2 = 121k $, then k is equal to _______
In the expansion of \[ \left( \sqrt[3]{2} + \frac{1}{\sqrt[3]{3}} \right)^n , \, n \in \mathbb{N}, \] if the ratio of the 15th term from the beginning to the 15th term from the end is \[ \frac{1}{6}, \] then the value of \[ {}^nC_3 \] is:
A conducting bar moves on two conducting rails as shown in the figure. A constant magnetic field \( B \) exists into the page. The bar starts to move from the vertex at time \( t = 0 \) with a constant velocity. If the induced EMF is \( E \propto t^n \), then the value of \( n \) is _____. 