We are asked to find the coefficient of \(x^{301}\) in the expansion of the series:
\[ (1+x)^{500} + x(1+x)^{499} + x^2(1+x)^{498} + \cdots + x^{500}. \]
The given series can be written as:
\[ S = (1+x)^{500} + x(1+x)^{499} + x^2(1+x)^{498} + \cdots + x^{500}. \]
This is a sum of terms where each term involves \((1+x)^{500-n}\) multiplied by \(x^n\), where \(n\) ranges from 0 to 500.
The general term in the expansion is:
\[ x^n(1+x)^{500-n}. \]
We need to find the coefficient of \(x^{301}\) in the entire series. For each term \(x^n(1+x)^{500-n}\), the exponent of \(x\) in the expanded form of \((1+x)^{500-n}\) will be \(500-n\). We are interested in terms where the total exponent of \(x\) equals 301.
The exponent of \(x\) in each term is:
\[ n + k = 301, \]
where \(k\) is the exponent of \(x\) in the expansion of \((1+x)^{500-n}\). The coefficient of \(x^{301}\) in \((1+x)^{500-n}\) is:
\[ {}^{500-n}C_{301-n}. \]
Thus, the required coefficient is the sum of the coefficients of \(x^{301}\) in all terms. After simplifying, we get the coefficient of \(x^{301}\) as:
\[ {}^{501}C_{200}. \]
Thus, the correct answer is \({}^{501}C_{200}\).
Let $ A \in \mathbb{R} $ be a matrix of order 3x3 such that $$ \det(A) = -4 \quad \text{and} \quad A + I = \left[ \begin{array}{ccc} 1 & 1 & 1 \\2 & 0 & 1 \\4 & 1 & 2 \end{array} \right] $$ where $ I $ is the identity matrix of order 3. If $ \det( (A + I) \cdot \text{adj}(A + I)) $ is $ 2^m $, then $ m $ is equal to:
A square loop of sides \( a = 1 \, {m} \) is held normally in front of a point charge \( q = 1 \, {C} \). The flux of the electric field through the shaded region is \( \frac{5}{p} \times \frac{1}{\varepsilon_0} \, {Nm}^2/{C} \), where the value of \( p \) is:
The binomial theorem formula is used in the expansion of any power of a binomial in the form of a series. The binomial theorem formula is
