To find the coefficient of the \(x^2\) term in the binomial expansion of \(\left(\frac{1}{3}x^{\frac{1}{3}} + x^{-\frac{1}{4}}\right)^{10}\), we utilize the binomial theorem:
The general term in the expansion is given by:
\(T_{r+1} = \binom{10}{r} \left(\frac{1}{3}x^{\frac{1}{3}}\right)^{10-r} \left(x^{-\frac{1}{4}}\right)^r\)
Simplifying the expression for \(T_{r+1}\), we get:
\(T_{r+1} = \binom{10}{r} \left(\frac{1}{3}\right)^{10-r} x^{\frac{1}{3}(10-r)} x^{-\frac{1}{4}r}\)
Combine the exponents of \(x\):
\(T_{r+1} = \binom{10}{r} \left(\frac{1}{3}\right)^{10-r} x^{\frac{10-r}{3} - \frac{r}{4}}\)
Equating the exponent of \(x\) to 2, we solve:
\(\frac{10-r}{3} - \frac{r}{4} = 2\)
Multiply through by 12 to clear fractions:
4(10-r) - 3r = 24
40 - 4r - 3r = 24
40 - 7r = 24
16 = 7r
r = \frac{16}{7} \Rightarrow \text{incorrect since r has to be an integer. Checking with } (10-r)/3 = 2 + r/4
This can also be rewritten as
(10-r)/3 - 2 = r/4 as
(10-r) - 6 = 3(r/4) or
r =4 which is an integer
\(T_5 = \binom{10}{4} \left(\frac{1}{3}\right)^6 x^{\left(\frac{10-4}{3}-\frac{4}{4}\right)}\)
Now, the coefficient of \(x^2\) comes from the scalar part:
\(\binom{10}{4} \left(\frac{1}{3}\right)^6\)
Compute:
\(\binom{10}{4} = 210\)
\(\left(\frac{1}{3}\right)^6 = \frac{1}{729}\)
Therefore, the coefficient is:
\(\frac{210}{729} = \frac{70}{243}\)
Thus, the coefficient of \(x^2\) is \(\frac{70}{243}\).
To find the coefficient of \(x^2\) in the expansion, identify the appropriate terms from the expansion that contribute to \(x^2\) when multiplied.
Step 1: Identify relevant terms
The general term in the expansion can be written as:
\[ T_{r+1} = {}^{10}C_{r} \left(\frac{1}{3}x^{\frac{1}{2}}\right)^{10-r} \left(x^{-\frac{1}{4}}\right)^{r} \]
\[ = {}^{10}C_{r} \times \left(\frac{1}{3}\right)^{10-r} x^{\frac{10-r}{2} - \frac{r}{4}} \]
We have to find the coefficient of \(x^2\).
\[ \frac{10-r}{2} - \frac{r}{4} = 2 \Rightarrow r = 4 \]
\[ T_{4+1} = {}^{10}C_{4} \left(\frac{1}{3}\right)^{6} x^2 \]
Step 2: Calculate the coefficient
\[ = \frac{10 \times 9 \times 8 \times 7}{4 \times 3 \times 2 \times 1} \times \frac{1}{3^6} = \frac{70}{243} \] Thus, the coefficient of \(x^2\) is \(\frac{70}{243}\), which matches option (A).