To find the circumcentre of a triangle with vertices \( A(x_1, y_1), B(x_2, y_2), C(x_3, y_3) \), we solve the perpendicular bisectors of any two sides.
Let \( A = (-2, 3), B = (2, -1), C = (4, 0) \).
1. Midpoint of \( AB \):
\[
M_{AB} = \left( \dfrac{-2 + 2}{2}, \dfrac{3 + (-1)}{2} \right) = (0, 1)
\]
Slope of \( AB = \dfrac{-1 - 3}{2 - (-2)} = \dfrac{-4}{4} = -1 \Rightarrow \) Perpendicular slope = 1
Equation of perpendicular bisector of \( AB \):
\[
y - 1 = 1(x - 0) \Rightarrow y = x + 1 \tag{1}
\]
2. Midpoint of \( BC \):
\[
M_{BC} = \left( \dfrac{2 + 4}{2}, \dfrac{-1 + 0}{2} \right) = (3, -0.5)
\]
Slope of \( BC = \dfrac{0 - (-1)}{4 - 2} = \dfrac{1}{2} \Rightarrow \) Perpendicular slope = -2
Equation of perpendicular bisector of \( BC \):
\[
y + 0.5 = -2(x - 3) \Rightarrow y = -2x + 6 - 0.5 = -2x + 5.5 \tag{2}
\]
Solving equations (1) and (2):
\[
x + 1 = -2x + 5.5 \Rightarrow 3x = 4.5 \Rightarrow x = \dfrac{3}{2},\quad y = x + 1 = \dfrac{5}{2}
\]
So, the circumcentre is:
\[
\boxed{\left( \dfrac{3}{2}, \dfrac{5}{2} \right)}
\]