Step 1: Balanced bridge condition.
\[
\frac{R_1}{R_2} = \frac{l_1}{l_2}.
\]
Step 2: First case (without extra resistor).
$l_1 = 40 \, \text{cm}, \quad l_2 = 60 \, \text{cm}$.
\[
\frac{R_1}{R_2} = \frac{40}{60} = \frac{2}{3}. \quad (1)
\]
Step 3: Second case (with 10 $\Omega$ in series with $R_1$).
Balanced point at $40 \, \text{cm}$ from B $\Rightarrow$ $l_1 = 60 \, \text{cm}, l_2 = 40 \, \text{cm}$.
\[
\frac{R_1 + 10}{R_2} = \frac{60}{40} = \frac{3}{2}. \quad (2)
\]
Step 4: Solve equations (1) and (2).
From (1):
\[
R_1 = \frac{2}{3} R_2. \quad (3)
\]
Substitute in (2):
\[
\frac{\frac{2}{3}R_2 + 10}{R_2} = \frac{3}{2}.
\]
\[
\frac{2R_2}{3R_2} + \frac{10}{R_2} = \frac{3}{2}.
\]
\[
\frac{2}{3} + \frac{10}{R_2} = \frac{3}{2}.
\]
\[
\frac{10}{R_2} = \frac{3}{2} - \frac{2}{3} = \frac{9 - 4}{6} = \frac{5}{6}.
\]
\[
R_2 = \frac{10 \times 6}{5} = 12 \, \Omega.
\]
Correction check: Let's recalc carefully:
\[
\frac{\frac{2}{3}R_2 + 10}{R_2} = \frac{3}{2}.
\]
\[
\frac{2R_2}{3R_2} + \frac{10}{R_2} = \frac{3}{2}.
\]
\[
\frac{2}{3} + \frac{10}{R_2} = \frac{3}{2}.
\]
\[
\frac{10}{R_2} = \frac{3}{2} - \frac{2}{3} = \frac{9 - 4}{6} = \frac{5}{6}.
\]
\[
R_2 = \frac{10 \times 6}{5} = 12 \, \Omega.
\]
Then, from (3):
\[
R_1 = \frac{2}{3} \times 12 = 8 \, \Omega.
\]
Step 5: Final Answer.
\[
R_1 = 8 \, \Omega, \quad R_2 = 12 \, \Omega.
\]
---