Step 1: Write down the known values
Speed, $V = 18$ kmph = $18 \times \frac{1000}{3600} = 5$ m/s
Lag distance, $L = 14$ m
Coefficient of friction, $f = 0.36$
Step 2: Calculate total stopping distance using the general formula
\[
\text{Stopping distance} = \text{Lag distance} + \text{Braking distance}
\]
\[
\text{Braking distance} = \frac{V^2}{2gf}
= \frac{(5)^2}{2 \times 9.81 \times 0.36}
= \frac{25}{7.0632} \approx 3.54 \text{ m}
\]
\[
\text{Total stopping distance} = 14 + 3.54 = 17.54 \text{ m}
\]
Step 3: Calculate ideal braking distance (if there were no lag)
\[
\text{Ideal stopping distance} = \frac{V^2}{2gf} = 3.54 \text{ m}
\]
Step 4: Compute braking efficiency using the formula:
\[
\text{Braking Efficiency (BE)} = \left( \frac{\text{Ideal stopping distance}}{\text{Actual stopping distance}} \right) \times 100
= \left( \frac{3.54}{17.54} \right) \times 100 \approx 25.28%
\]