To simplify the Boolean expression \( Y = \overline{PQ}R + Q\bar{R} + \bar{P}QR + PQR \), we will apply Boolean algebra rules. Let's break it down step by step:
\[ Y = \overline{PQ}R + Q\overline{R} + QR(\bar{P} + P) \]
\[ Y = \overline{PQ}R + Q\overline{R} + QR \]
\[ Y = R(\overline{PQ} + Q) + Q\overline{R} \]
\[ \overline{PQ} + Q = Q \] So the expression becomes: \[ Y = QR + Q\overline{R} \]
\[ Y = Q(R + \overline{R}) \]
\[ Y = Q \]
\[ Y = Q + R \]
Therefore, the simplified expression is \(Q + R\). None of the extra combinations of terms result in further simplifications or changes since all terms have been properly absorbed or simplified.
The correct answer is Q+R.

