In the A.C. circuit given below, voltmeters $ V_1 $ and $ V_2 $ read 100 V each. Find the reading of the voltmeter $ V_3 $ and the ammeter A.
An alternating voltage is given by \( e = 8 \sin(628.4 t) \).
Find:
(i) Peak value of e.m.f.
(ii) Frequency of e.m.f.
(iii) Instantaneous value of e.m.f. at time \( t = 10 \, {ms} \)
A block of certain mass is placed on a rough floor. The coefficients of static and kinetic friction between the block and the floor are 0.4 and 0.25 respectively. A constant horizontal force \( F = 20 \, \text{N} \) acts on it so that the velocity of the block varies with time according to the following graph. The mass of the block is nearly (Take \( g = 10 \, \text{m/s}^2 \)):
A wooden block of mass M lies on a rough floor. Another wooden block of the same mass is hanging from the point O through strings as shown in the figure. To achieve equilibrium, the coefficient of static friction between the block on the floor and the floor itself is
The circuit shown in the figure contains two ideal diodes \( D_1 \) and \( D_2 \). If a cell of emf 3V and negligible internal resistance is connected as shown, then the current through \( 70 \, \Omega \) resistance (in amperes) is:
When voltage changes its direction after every half cycle is known as alternating voltage. The current flows in the circuit at that time are known as alternating current. The alternating current(AC) follows the sine function which changes its polarity concerning time. Most of the electrical devices are operating on the ac voltage.